Substantial reduction of trapping by Mg co-doping in LuAG:Ce, Mg epitaxial garnet films

[1]  Y. Zorenko,et al.  Investigations of the influence of Am-241 photons on the measured alpha particle response of luminescent materials , 2020, Radiation Measurements.

[2]  M. Moszynski,et al.  Scintillation Characteristics of Mg²⁺-Codoped Y0.8Gd2.2(Al₅–ₓGaₓ)O12:Ce Single Crystals , 2020, IEEE Transactions on Nuclear Science.

[3]  S. Kurosawa,et al.  Research on Efficient Fast Scintillators: Evidence and X‐Ray Absorption Near Edge Spectroscopy Characterization of Ce4+ in Ce3+, Mg2+‐Co‐Doped Gd3Al2Ga3O12 Garnet Crystal , 2019, physica status solidi (b).

[4]  A. Trofimov,et al.  Radioluminescence of Lu3Al5O12:Ce single crystal and transparent polycrystalline ceramic at high temperatures , 2019 .

[5]  Xi-qi Feng,et al.  A fast lutetium aluminum garnet scintillation ceramic with Ce3+ and Ca2+ co-dopants , 2019 .

[6]  Y. Zorenko,et al.  Composite thermoluminescent detectors based on the Ce3+ doped LuAG/YAG and YAG/LuAG epitaxial structures , 2019, Radiation Measurements.

[7]  M. Kucera,et al.  Influence of Mg‐to‐Ce Concentration Ratio on Cathodoluminescence in LuAG and LuGAGG Single‐Crystalline Films , 2019, physica status solidi (a).

[8]  M. Moszynski,et al.  Scintillation properties of Gd3Al2Ga3O12:Ce, Li and Gd3Al2Ga3O12:Ce, Mg single crystal scintillators: A comparative study , 2019, Optical Materials.

[9]  M. Nikl,et al.  Effect of Si4+ co-doping on luminescence and scintillation properties of Lu3Al5O12:Ce,Ca epitaxial garnet films , 2019, Optical Materials.

[10]  E. Auffray,et al.  Progress in fabrication of long transparent YAG:Ce and YAG:Ce,Mg single crystalline fibers for HEP applications , 2019, CrystEngComm.

[11]  M. Kucera,et al.  Prospective scintillation electron detectors for S(T)EM based on garnet film scintillators , 2018, Microscopy research and technique.

[12]  A. Vaitkevičius,et al.  Improvement of response time in GAGG:Ce scintillation crystals by magnesium codoping , 2018, Journal of Applied Physics.

[13]  W. Drozdowski,et al.  Scintillation properties and effect of thermal annealing in Lu3Al5O12:Ce and Lu3Al5O12:Pr ceramics , 2018, Optical Materials.

[14]  M. Nikl,et al.  Dependence of Ce3+ - related photo- and thermally stimulated luminescence characteristics on Mg2+ content in single crystals and epitaxial films of Gd3(Ga,Al)5O12:Ce,Mg , 2018, Optical Materials.

[15]  A. Vedda,et al.  Influence of cerium doping concentration on the optical properties of Ce,Mg:LuAG scintillation ceramics , 2018, Journal of the European Ceramic Society.

[16]  M. Nikl,et al.  Tailoring and Optimization of LuAG:Ce Epitaxial Film Scintillation Properties by Mg Co-Doping , 2018, Crystal Growth & Design.

[17]  P. Lecoq,et al.  Precise rise and decay time measurements of inorganic scintillators by means of X-ray and 511 keV excitation , 2018 .

[18]  V. Laguta,et al.  Hole Self-Trapping in Y3Al5O12 and Lu3Al5O12 Garnet Crystals , 2017, Physical Review Applied.

[19]  V. Chani,et al.  Effect of Mg co-doping on scintillation properties of Ce:Gd 3 (Ga, Al) 5 O 12 single crystals with various Ga/Al ratios , 2017 .

[20]  A. Benaglia,et al.  Timing capabilities of garnet crystals for detection of high energy charged particles , 2017 .

[21]  G. Bizarri,et al.  Consequences of Ca Codoping in YAlO3 :Ce Single Crystals. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  M. Nikl,et al.  Garnet Scintillators of Superior Timing Characteristics: Material, Engineering by Liquid Phase Epitaxy , 2017 .

[23]  Y. Ohashi,et al.  Effects of Mg-codoping on luminescence and scintillation properties of Ce doped Lu 3 (Ga,Al) 5 O 12 single crystals , 2017 .

[24]  Y. Ohashi,et al.  Mg co-doping effects on Ce doped Y3(Ga,Al)5O12 scintillator , 2017 .

[25]  Pawel Bilski,et al.  Epitaxial Growth of LuAG:Ce and LuAG:Ce,Pr Films and Their Scintillation Properties , 2016, IEEE Transactions on Nuclear Science.

[26]  Xi-qi Feng,et al.  Towards Bright and Fast Lu3Al5O12:Ce,Mg Optical Ceramics Scintillators , 2016 .

[27]  T. Goto,et al.  Luminescence and scintillation properties of Lu 3 Al 5 O 12 nanoceramics sintered by SPS method , 2016 .

[28]  V. Laguta,et al.  The Stable ${\rm Ce}^{4 + }$ Center: A New Tool to Optimize Ce-Doped Oxide Scintillators , 2016, IEEE Transactions on Nuclear Science.

[29]  C. Dujardin,et al.  Deep traps can reduce memory effects of shallower ones in scintillators. , 2016, Physical chemistry chemical physics : PCCP.

[30]  Fang Meng,et al.  Relationship between Ca2+ concentration and the properties of codoped Gd3Ga3Al2O12:Ce scintillators , 2015 .

[31]  Xi-qi Feng,et al.  Antisite defects in nonstoichiometric Lu3Al5O12:Ce ceramic scintillators , 2015 .

[32]  Y. Zorenko,et al.  High‐perfomance Ce‐doped multicomponent garnet single crystalline film scintillators , 2015 .

[33]  Stuart R. Miller,et al.  Bright Lu2O3:Eu Thin‐Film Scintillators for High‐Resolution Radioluminescence Microscopy , 2015, Advanced healthcare materials.

[34]  M. Nikl,et al.  Composition Tailoring in Ce-Doped Multicomponent Garnet Epitaxial Film Scintillators , 2015 .

[35]  Xi-qi Feng,et al.  ESR and TSL study of hole and electron traps in LuAG:Ce,Mg ceramic scintillator , 2015 .

[36]  Xi-qi Feng,et al.  O– centers in LuAG:Ce,Mg ceramics , 2015 .

[37]  Y. Ohashi,et al.  Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd 3 Al 2 Ga 3 O 12 scintillator , 2015 .

[38]  Y. Ohashi,et al.  Improvement of scintillation properties on Ce doped Y3Al5O12 scintillator by divalent cations co-doping , 2015 .

[39]  Fang Meng,et al.  Role of Ce4+ in the Scintillation Mechanism of Codoped Gd3Ga3Al2O12∶Ce , 2014 .

[40]  Hideki Yagi,et al.  Positive hysteresis of Ce-doped GAGG scintillator , 2014 .

[41]  Shunsuke Kurosawa,et al.  Defect Engineering in Ce-Doped Aluminum Garnet Single Crystal Scintillators , 2014 .

[42]  A. Mandowski,et al.  Comparative analysis of the scintillation and thermoluminescent properties of Ce-doped LSO and YSO crystals and films , 2014 .

[43]  P. Sybilski,et al.  Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure , 2014 .

[44]  M. Nikl,et al.  Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study , 2014 .

[45]  Xi-qi Feng,et al.  Effect of Mg2+ co‐doping on the scintillation performance of LuAG:Ce ceramics , 2014 .

[46]  Fang Meng,et al.  Effect of codoping on scintillation and optical properties of a Ce-doped Gd3Ga3Al2O12 scintillator , 2013 .

[47]  A. Vedda,et al.  Defect-Driven Radioluminescence Sensitization in Scintillators: The Case of Lu2Si2O7:Pr , 2013 .

[48]  P. Dorenbos,et al.  Evidence and Consequences of Ce $^{4+}$ in LYSO:Ce,Ca and LYSO:Ce,Mg Single Crystals for Medical Imaging Applications , 2013, IEEE Transactions on Nuclear Science.

[49]  M. Moszynski,et al.  Comparison of absorption, luminescence and scintillation characteristics in Lu1.95Y0.05SiO5:Ce,Ca and Y2SiO5:Ce scintillators , 2013 .

[50]  A. Vedda,et al.  The Harmful Effects of Sintering Aids in Pr:LuAG Optical Ceramic Scintillator , 2012 .

[51]  J. Tous,et al.  Scintillation efficiency and X-ray imaging with the RE-Doped LuAG thin films grown by liquid phase epitaxy , 2012 .

[52]  Mark S. Akselrod,et al.  Thermoluminescence, optically stimulated luminescence and radioluminescence properties of Al2O3:C,Mg , 2011 .

[53]  A. Makhov,et al.  Luminescence of F+‐type centers in undoped Lu3Al5O12 single crystals , 2011 .

[54]  R. V. Sargsyan,et al.  Bridgman growth and site occupation in LuAG:Ce scintillator crystals , 2010 .

[55]  M. Nikl,et al.  Scintillation properties of LuAG:Ce single crystalline films grown by LPE method , 2010 .

[56]  E. Auffray,et al.  LuAG:Ce fibers for high energy calorimetry , 2010 .

[57]  P. Dorenbos Fundamental Limitations in the Performance of ${\rm Ce}^{3+}$ –, ${\rm Pr}^{3+}$ –, and ${\rm Eu}^{2+}$ –Activated Scintillators , 2010 .

[58]  M. Nikl,et al.  Growth and characterization of YAG and LuAG epitaxial films for scintillation applications , 2010 .

[59]  M. Moszynski,et al.  Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection , 2009, IEEE Transactions on Nuclear Science.

[60]  L. Eriksson,et al.  Effects of Calcium Codoping on Charge Traps in LSO:Ce Crystals , 2009, IEEE Transactions on Nuclear Science.

[61]  A. Rack,et al.  LSO-Based Single Crystal Film Scintillator for Synchrotron-Based Hard X-Ray Micro-Imaging , 2009, IEEE Transactions on Nuclear Science.

[62]  A. Vedda,et al.  Thermally stimulated tunneling in rare-earth-doped oxyorthosilicates , 2008 .

[63]  A. Vedda,et al.  Complex oxide scintillators: Material defects and scintillation performance , 2008 .

[64]  Kan Yang,et al.  Effects of $\hbox {Ca}^{2+}$ Co-Doping on the Scintillation Properties of LSO:Ce , 2008, IEEE Transactions on Nuclear Science.

[65]  A. Vedda,et al.  Shallow traps and radiative recombination processes in Lu3Al5O12:Ce single crystal scintillator , 2007 .

[66]  C. Milanese,et al.  The effect of intrinsic defects on RE3Al5O12RE3Al5O12 garnet scintillator performance , 2007 .

[67]  Y. Zorenko,et al.  Influence of thermal treatment and γ-radiation on absorption, luminescence and scintillation properties of Lu3Al5O12:Ce single crystalline films , 2007 .

[68]  A. Makhov,et al.  The role of Pb2+ ions in the luminescence of LuAG:Ce single crystalline films , 2007 .

[69]  A. Vedda,et al.  Energy transfer and charge carrier capture processes in wide‐band‐gap scintillators , 2007 .

[70]  A. Bos Theory of thermoluminescence , 2006 .

[71]  R. Grimes,et al.  Extrinsic defect structure of RE3Al5O12 garnets , 2006 .

[72]  K. Blažek,et al.  Luminescence of excitons and antisite defects in Lu3Al5O12:Ce single crystals and single-crystal films , 2005 .

[73]  A. Vedda,et al.  The antisite LuAl defect‐related trap in Lu3Al5O12:Ce single crystal , 2005 .

[74]  Karel Nejezchleb,et al.  Scintillation response of Ce-doped or intrinsic scintillating crystals in the range up to 1MeV , 2004 .

[75]  V. Tarasov,et al.  New type of scintillation detectors for biological, medical, and radiation monitoring applications , 2002, IEEE Transactions on Nuclear Science.

[76]  C. Eijk,et al.  Inorganic scintillators in medical imaging detectors , 2003 .

[77]  P. Dorenbos Light output and energy resolution of Ce3+-doped scintillators , 2002 .

[78]  M. Spriņģis,et al.  The F-type centres in YAG crystals , 2001 .

[79]  M. Martini,et al.  Traps and Timing Characteristics of LuAG:Ce3+ Scintillator , 2000 .

[80]  M. Martini,et al.  Tunneling process in thermally stimulated luminescence of mixed LuxY1-xAlO3 : Ce crystals , 2000 .

[81]  Haiwen Xi,et al.  Antiferromagnetic thickness dependence of exchange biasing , 2000 .

[82]  J. Tuyn,et al.  Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics , 1998 .

[83]  M. Balcerzyk,et al.  LuAlO/sub 3/:Ce and other aluminate scintillators , 1995 .

[84]  A. Bos,et al.  The Analysis of Thermoluminescent Glow Peaks in CaF2:Tm (TLD-300) , 1991 .

[85]  S. S. Shinde,et al.  Relative thermoluminescence response of CaSO4: Dy to alpha and gamma rays , 1979 .