Game-theoretical semantics: insights and prospects

The paradigm problem for game-theoretical semantics (GTS) is the treatment of quantifiers, primarily logicians’ existential and universal quantifiers. As far as the uses of quantifiers in logic and mathematics are concerned, the basic ideas codified in GTS have long been an integral part of logicians’ and mathematicians’ folklore. Everybody who has taken a serious course in calculus remembers the definition of what it means for a function y = f(x) to be continuous at x0. It means that, given a number w, however small, we can find ɛ such that |f(x) - F(x0) | < δ given any x such that | x – x0| < ɛ.1 The most natural way of making this jargon explicit is to envision each choice of the value of an existentially bound variable to be my own move in a game, and each choice of the value of a universally bound variable a move in the same game by an imaginary opponent. The former is what is covered by such locutions as “we can find”, whereas the latter is what is intended by references to what is “given” to us. This is indeed what is involved in the continuity example.

[1]  M. A Course of Pure Mathematics , 1909, Nature.

[2]  A. S. Troelstra,et al.  Realizability and functional interpretations , 1973 .

[3]  Maaret Karttunen Infinitary Languages N ∞λ and Generalized Partial Isomorphisms , 1979 .

[4]  Noam Chomsky,et al.  वाक्यविन्यास का सैद्धान्तिक पक्ष = Aspects of the theory of syntax , 1965 .

[5]  J. Hintikka Temporal discourse and semantical games , 1982 .

[6]  J. Hintikka “Is”, semantical games, and semantical relativity , 1979 .

[7]  Jaakko Hintikka,et al.  Standard vs. Nonstandard Logic: Higher-Order, Modal, and First-Order Logics , 1981 .

[8]  Wilbur John Walkoe,et al.  Finite Partially-Ordered Quantification , 1970, J. Symb. Log..

[9]  B. Dahn Admissible sets and structures , 1978 .

[10]  JAAKKO HINTIKKA,et al.  PRONOUNS OF LAZINESS IN GAME-THEORETICAL SEMANTICS , 1977 .

[11]  Andrzej Mostowski,et al.  A formula with no recursively enumerable model , 1955 .

[12]  Jaakko Hintikka,et al.  Theories of Truth and Learnable Languages , 1980 .

[13]  G. Kreisel Note on arithmetic models for consistent formulae of the predicate calculus , 1950 .

[14]  Peter B. Andrews General models and extensionality , 1972, Journal of Symbolic Logic.

[15]  Alice Ter Meulen,et al.  Informational Independence in Intensional Context , 1979 .

[16]  Wolfgang Stegmüller Remarks on the completeness of logical systems relative to the validity-concepts of P. Lorenzen and K. Lorenz , 1964, Notre Dame J. Formal Log..

[17]  Alistair H. Lachlan,et al.  On the semantics of the Henkin quantifier , 1979, Journal of Symbolic Logic.

[18]  Kurt Gödel,et al.  On a hitherto unexploited extension of the finitary standpoint , 1980, J. Philos. Log..

[19]  B. Mates Identity and Predication in Plato , 1979 .

[20]  Yiannis N. Moschovakis,et al.  The game quantifier , 1972 .

[21]  J. Hintikka Kant on Existence, Predication, and the Ontological Argument , 1981 .

[22]  William A. Ladusaw Polarity sensitivity as inherent scope relations , 1980 .

[23]  J. Girard Functional Interpretation and Kripke Models , 1977 .

[24]  J. Hintikka Leibniz on Plenitude, Relations, and the ‘Reign of Law’ , 1972 .

[25]  Jaakko Hintikka,et al.  New Foundations for a Theory of Questions and Answers , 1983 .

[26]  Jon Barwise,et al.  Some applications of Henkin quantifiers , 1976 .

[27]  Veikko Rantala GAME-THEORETICAL SEMANTICS AND BACK-AND-FORTH , 1979 .

[28]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[29]  Jaakko Hintikka,et al.  Conditionals, Generic Quantifiers, and Other Applications of Subgames , 1979 .

[30]  M. Krynicki On the Expressive Power of the Language Using the Henkin Quantifier , 1979 .

[31]  K. Jon Barwise,et al.  On branching quantifiers in English , 1979, J. Philos. Log..

[32]  Jaakko Hintikka,et al.  Quantifiers vs. Quantification Theory , 1973 .

[33]  Jaakko Hintikka,et al.  On the any-thesis and the methodology of linguistics , 1980 .

[34]  Donald A. Martin,et al.  Descriptive Set Theory: Projective Sets , 1977 .

[35]  Veikko Rantala,et al.  Urn models: A new kind of non-standard model for first-order logic , 1975, J. Philos. Log..

[36]  Lauri Carlson,et al.  Focus and Dialogue Games , 1984 .

[37]  J. Hintikka A counterexample to Tarski-type truth-definitions as applied to natural languages , 1975 .

[38]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[39]  Jaakko Hintikka,et al.  A new approach to infinitary languages , 1976 .

[40]  J. Hintikka Semantical Games and Transcendental Arguments , 1983 .

[41]  Richmond H. Thomason,et al.  Formal Philosophy; Selected Papers , 1979 .

[42]  J. Hintikka Distributive Normal Forms in First-Order Logic , 1965 .

[43]  Jaakko Hintikka,et al.  Impossible possible worlds vindicated , 1975, J. Philos. Log..

[44]  Andrzej Mostowski,et al.  On a System of Axioms Which Has no Recursively Enumerable Arithmetic Model , 1953 .

[45]  H. Enderton Finite Partially-Ordered Quantifiers , 1970 .

[46]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[47]  Jens Erik Fenstad,et al.  The axiom of determinateness , 1970 .