Hydrodynamic simulation of XUV laser-produced plasmas

[1]  Nilsen,et al.  Gain saturation regime for laser-driven tabletop, transient Ni-like ion X-Ray lasers , 2000, Physical review letters.

[2]  Libor Juha,et al.  Ablation of Organic Polymers and Elemental Solids Induced by Intense XUV Radiation , 2002 .

[3]  J. Rocca,et al.  Focusing of a tabletop soft-x-ray laser beam and laser ablation. , 1999, Optics letters.

[4]  J. Meyer-ter-Vehn,et al.  MULTI — A computer code for one-dimensional multigroup radiation hydrodynamics , 1988 .

[5]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[6]  John M. Dawson,et al.  Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas , 1973 .

[7]  C. Chenais-popovics,et al.  Non-LTE opacity calculations with n − l splitting for radiative hydrodynamic codes , 1997 .

[8]  H. Wabnitz,et al.  Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser , 2002, Nature.

[9]  P. Zeitoun,et al.  Electromagnetic-field distribution measurements in the soft x-ray range: full characterization of a soft x-ray laser beam. , 2002, Physical review letters.

[10]  Jorge J. Rocca,et al.  Table-top soft x-ray lasers , 1999, CLEO 2016.

[11]  D. Mihalas,et al.  Foundations of Radiation Hydrodynamics , 1985 .

[12]  Navroz Patel,et al.  Shorter, brighter, better , 2002, Nature.

[13]  Yikuan Lee,et al.  The Impact of Communication Strategy on Launching New Products: The Moderating Role of Product Innovativeness , 2003 .

[14]  C. Chenais-popovics,et al.  Radiative heating of B, Al and Ni thin foils at 15–25 eV temperatures , 2000 .

[15]  O Peyrusse,et al.  Heating of thin foils with a relativistic-intensity short-pulse laser. , 2002, Physical review letters.

[16]  The Ultimate Bright Idea , 2002, Science.