MAS-DNP enables NMR studies of insect wings.

[1]  S. Sigurdsson,et al.  Highly Efficient Polarizing Agents for MAS-DNP of Proton-dense Molecular Solids. , 2022, Angewandte Chemie.

[2]  F. Mentink-Vigier,et al.  Dynamic nuclear polarization-enhanced, double-quantum filtered 13C-13C dipolar correlation spectroscopy of natural 13C abundant bone-tissue biomaterial. , 2022, Journal of magnetic resonance.

[3]  Yihua Zhou,et al.  Solid-state NMR of unlabeled plant cell walls: high-resolution structural analysis without isotopic enrichment , 2021, Biotechnology for Biofuels.

[4]  T. Gullion,et al.  Characterization of Insect Wing Membranes by 13C CPMAS NMR , 2020, Journal of Physical Chemistry C.

[5]  S. Gorb,et al.  Insect wing damage: causes, consequences and compensatory mechanisms , 2020, Journal of Experimental Biology.

[6]  J. Trébosc,et al.  Recent developments in MAS DNP-NMR of materials. , 2019, Solid state nuclear magnetic resonance.

[7]  Adam N. Smith,et al.  Natural Isotopic Abundance 13C and 15N Multidimensional Solid-State NMR Enabled by Dynamic Nuclear Polarization. , 2019, The journal of physical chemistry letters.

[8]  A. Rawal,et al.  DNP NMR spectroscopy reveals new structures, residues and interactions in wild spider silks. , 2019, Chemical communications.

[9]  G. Pass Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality. , 2018, Arthropod structure & development.

[10]  J. R. Long,et al.  A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers. , 2018, Journal of magnetic resonance.

[11]  Monu Kaushik,et al.  Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. , 2017, Progress in nuclear magnetic resonance spectroscopy.

[12]  T. Gullion,et al.  Solid-State NMR Study of the Cicada Wing. , 2017, The journal of physical chemistry. B.

[13]  N. Mosier,et al.  Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. , 2017, The journal of physical chemistry. A.

[14]  Subhradip Paul,et al.  Welcoming natural isotopic abundance in solid-state NMR: probing π-stacking and supramolecular structure of organic nanoassemblies using DNP† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02709a Click here for additional data file. , 2016, Chemical science.

[15]  H. Gottlieb,et al.  Studying the Conformation of a Silaffin-Derived Pentalysine Peptide Embedded in Bioinspired Silica using Solution and Dynamic Nuclear Polarization Magic-Angle Spinning NMR. , 2016, Journal of the American Chemical Society.

[16]  R. Tycko,et al.  Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning. , 2016, Journal of magnetic resonance.

[17]  M. Edén,et al.  Low-power broadband homonuclear dipolar recoupling in MAS NMR by two-fold symmetry pulse schemes for magnetization transfers and double-quantum excitation. , 2015, Journal of magnetic resonance.

[18]  Daniel Lee,et al.  Is solid-state NMR enhanced by dynamic nuclear polarization? , 2015, Solid state nuclear magnetic resonance.

[19]  K. Schmidt-Rohr,et al.  Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. , 2014, Journal of magnetic resonance.

[20]  G. De Paëpe,et al.  Matrix-free dynamic nuclear polarization enables solid-state NMR 13C-13C correlation spectroscopy of proteins at natural isotopic abundance. , 2013, Chemical communications.

[21]  R. Griffin,et al.  High frequency dynamic nuclear polarization. , 2013, Accounts of chemical research.

[22]  C. Copéret,et al.  Dynamic nuclear polarization surface enhanced NMR spectroscopy. , 2013, Accounts of chemical research.

[23]  M. Bardet,et al.  Rapid natural-abundance 2D 13C-13C correlation spectroscopy using dynamic nuclear polarization enhanced solid-state NMR and matrix-free sample preparation. , 2012, Angewandte Chemie.

[24]  C. Copéret,et al.  Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids. , 2012, Journal of the American Chemical Society.

[25]  M. Edén,et al.  Low-power broadband homonuclear dipolar recoupling without decoupling: Double-quantum 13C NMR correlations at very fast magic-angle spinning , 2012 .

[26]  W. Sajomsang,et al.  Preparation and characterization of α-chitin from cicada sloughs , 2010 .

[27]  Robert G Griffin,et al.  Dynamic nuclear polarization at high magnetic fields. , 2008, The Journal of chemical physics.

[28]  R. Griffin,et al.  Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. , 2006, Journal of the American Chemical Society.

[29]  B. Fung,et al.  An improved broadband decoupling sequence for liquid crystals and solids. , 2000, Journal of magnetic resonance.

[30]  C. Rienstra,et al.  Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy , 1999 .

[31]  K. Kramer,et al.  Catechols Involved in Sclerotization of Cuticle and Egg Pods of the Grasshopper, Melanoplus sanguinipes, and Their Interactions With Cuticular Proteins , 1999 .

[32]  K. Kramer,et al.  Detection of Intercatechol Cross-Links in Insect Cuticle by Solid-State Carbon-13 and Nitrogen-15 NMR , 1996 .

[33]  K. Kramer,et al.  Applications of Solids NMR to the Analysis of Insect Sclerotized Structures , 1995 .

[34]  R. Wootton FUNCTIONAL MORPHOLOGY OF INSECT WINGS , 1992 .

[35]  K. Kramer,et al.  Insect Cuticle Sclerotization , 1992 .

[36]  K. Kramer,et al.  Analysis of cockroach oothecae and exuviae by solid-state 13C-NMR spectroscopy , 1991 .

[37]  K. Kramer,et al.  Solid-state 13C-NMR and diphenol analyses of sclerotized cuticles from stored product Coleoptera , 1989 .

[38]  E. Baehrecke,et al.  In vivo and solid state 13C nuclear magnetic resonance studies of tyrosine metabolism during insect cuticle formation. , 1988, Comparative biochemistry and physiology. B, Comparative biochemistry.

[39]  E. Stejskal,et al.  Aromatic cross-links in insect cuticle: detection by solid-state 13C and 15N NMR. , 1987, Science.

[40]  M. Peter,et al.  CP/MAS‐13C‐NMR Spectra of Sclerotized Insect Cuticle and of Chitin , 1984 .