Planar graphs and their duals on cylinder surfaces

In this thesis, we investigates plane drawings of undirected and directed graphs on cylinder surfaces. In the case of undirected graphs, the vertices are positioned on a line that is parallel to the cylinder’s axis and the edge curves must not intersect this line. We show that a plane drawing is possible if and only if the graph is a double-ended queue (deque) graph, i. e., the vertices of the graph can be processed according to a linear order and the edges correspond to items in the deque inserted and removed at their end vertices. A surprising consequence resulting from these observations is that the deque characterizes planar graphs with a Hamiltonian path. This result extends the known characterization of planar graphs with a Hamiltonian cycle by two stacks. By these insights, we also obtain a new characterization of queue graphs and their duals. We also consider the complexity of deciding whether a graph is a deque graph and prove that it is NP-complete. By introducing a split operation, we obtain the splittable deque and show that it characterizes planarity. For the proof, we devise an algorithm that uses the splittable deque to test whether a rotation system is planar. In the case of directed graphs, we study upward plane drawings where the edge curves follow the direction of the cylinder’s axis (standing upward planarity; SUP) or they wind around the axis (rolling upward planarity; RUP). We characterize RUP graphs by means of their duals and show that RUP and SUP swap their roles when considering a graph and its dual. There is a physical interpretation underlying this characterization: A SUP graph is to its RUP dual graph as electric current passing through a conductor to the magnetic field surrounding the conductor. Whereas testing whether a graph is RUP is NP-hard in general [Bra14], for directed graphs without sources and sink, we develop a linear-time recognition algorithm that is based on our dual graph characterization of RUP graphs.

[1]  G. Battista,et al.  Hierarchies and planarity theory , 1988, IEEE Trans. Syst. Man Cybern..

[2]  David Kelly Fundamentals of planar ordered sets , 1987, Discret. Math..

[3]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[4]  Christian Bachmaier,et al.  The Duals of Upward Planar Graphs on Cylinders , 2012, WG.

[5]  Ardeshir Dolati,et al.  On the Upward Embedding on the Torus , 2008 .

[6]  Meena Mahajan,et al.  Upper Bounds for Monotone Planar Circuit Value and Variants , 2009, computational complexity.

[7]  David R. Wood,et al.  Three-Dimensional Grid Drawings with Sub-quadratic Volume , 2003, GD.

[8]  Christian Bachmaier,et al.  Linear Time Planarity Testing and Embedding of Strongly Connected Cyclic Level Graphs , 2008, ESA.

[9]  Arnold L. Rosenberg,et al.  The Diogenes Approach to Testable Fault-Tolerant Arrays of Processors , 1983, IEEE Transactions on Computers.

[10]  P. Rosenstiehl Solution algébrique du problème de Gauss sur la permutation des points d'intersection d'une ou plusieurs courbes fermées du plan , 1976 .

[11]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[12]  Walter Unger,et al.  The Complexity of Colouring Circle Graphs (Extended Abstract) , 1992, STACS.

[13]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[14]  Îáá Íâåçîá Þ Ü Ý ¸ Èì Åçêáae Ü Ý,et al.  Layout of Graphs with Bounded Tree-Width , 2004 .

[15]  Roland Vollmar,et al.  Über einen Automaten mit Pufferspeicherung , 1970, Computing.

[16]  Patrick Healy,et al.  Two Fixed-parameter Tractable Algorithms for Testing Upward Planarity , 2006, Int. J. Found. Comput. Sci..

[17]  Andreas Gleißner,et al.  Characterizations of Deque and Queue Graphs , 2011, WG.

[18]  Arnold L. Rosenberg,et al.  Embedding graphs in books: a layout problem with applications to VLSI design , 1985 .

[19]  Carsten Maple,et al.  Planarity testing for graphs represented by a rotation scheme , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[20]  Walter Didimo,et al.  Upward Spirality and Upward Planarity Testing , 2005, SIAM J. Discret. Math..

[21]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[22]  Michael Jünger,et al.  Level Planar Embedding in Linear Time , 1999, Graph Drawing.

[23]  Ingo Wegener,et al.  Complexity theory - exploring the limits of efficient algorithms , 2005 .

[24]  Giuseppe Di Battista,et al.  Bipartite Graphs, Upward Drawings, and Planarity , 1990, Inf. Process. Lett..

[25]  Christian Bachmaier,et al.  Classification of Planar Upward Embedding , 2011, Graph Drawing.

[26]  Miklós Bóna,et al.  A Survey of Stack-Sorting Disciplines , 2003, Electron. J. Comb..

[27]  Christian Bachmaier,et al.  Cyclic Leveling of Directed Graphs , 2009, GD.

[28]  Ulrik Brandes,et al.  Centrality in Policy Network Drawings , 1999, GD.

[29]  Frank Harary,et al.  The number of caterpillars , 1973, Discret. Math..

[30]  Franz-Josef Brandenburg,et al.  Equality Sets and Complexity Classes , 1980, SIAM J. Comput..

[31]  Christian Bachmaier,et al.  A Radial Adaptation of the Sugiyama Framework for Visualizing Hierarchical Information , 2007, IEEE Transactions on Visualization and Computer Graphics.

[32]  H. Whitney Non-Separable and Planar Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Roberto Tamassia,et al.  On-Line Planarity Testing , 1989, SIAM J. Comput..

[34]  Franz-Josef Brandenburg,et al.  Characterizing Planarity by the Splittable Deque , 2013, Graph Drawing.

[35]  Robert E. Tarjan,et al.  Sorting Using Networks of Queues and Stacks , 1972, J. ACM.

[36]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[37]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[38]  Peter W. Shor,et al.  On the pagenumber of planar graphs , 1984, STOC '84.

[39]  J. Hopcroft,et al.  Efficient algorithms for graph manipulation , 1971 .

[40]  János Pach,et al.  On the Queue Number of Planar Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[41]  Yubao Guo,et al.  Hamiltonicity of maximal planar graphs and planar triangulations , 2007 .

[42]  Sebastian Vetter,et al.  Testing Planarity by Switching Trains , 2012, Graph Drawing.

[43]  David Eppstein,et al.  Fixed Parameter Tractability of Crossing Minimization of Almost-Trees , 2013, GD.

[44]  Arnold L. Rosenberg,et al.  Comparing Queues and Stacks as Mechanisms for Laying out Graphs , 1992, SIAM J. Discret. Math..

[45]  Helen C. Purchase,et al.  Which Aesthetic has the Greatest Effect on Human Understanding? , 1997, GD.

[46]  Lenwood S. Heath Embedding Planar Graphs in Seven Pages , 1984, FOCS.

[47]  Paul C. Kainen,et al.  Some recent results in topological graph theory , 1974 .

[48]  Peter F. Stadler,et al.  Relevant Cycles in Biopolymers and Random Graphs , 1999 .

[49]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[50]  Meena Mahajan,et al.  Evaluating Monotone Circuits on Cylinders, Planes and Tori , 2006, STACS.

[51]  Lenwood S. Heath,et al.  Laying out Graphs Using Queues , 1992, SIAM J. Comput..

[52]  Ignaz Rutter,et al.  Testing Mutual duality of Planar graphs , 2014, Int. J. Comput. Geom. Appl..

[53]  Seth M. Malitz,et al.  Genus g Graphs Have Pagenumber O(sqrt(g)) , 1994, J. Algorithms.

[54]  Karsten Klein,et al.  Planarity Testing and Optimal Edge Insertion with Embedding Constraints , 2006, J. Graph Algorithms Appl..

[55]  Roberto Tamassia,et al.  Algorithms for Plane Representations of Acyclic Digraphs , 1988, Theor. Comput. Sci..

[56]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[57]  Carlo Mannino,et al.  Upward drawings of triconnected digraphs , 2005, Algorithmica.

[58]  Christian Bachmaier,et al.  Plane Drawings of Queue and Deque Graphs , 2010, Graph Drawing.

[59]  Walter Unger,et al.  On the k-Colouring of Circle-Graphs , 1988, STACS.

[60]  Robert E. Tarjan,et al.  Gauss Codes, Planar Hamiltonian Graphs, and Stack-Sortable Permutations , 1984, J. Algorithms.

[61]  David R. Wood,et al.  Queue Layouts, Tree-Width, and Three-Dimensional Graph Drawing , 2002, FSTTCS.

[62]  Sriram Venkata Pemmarju Exploring the powers of stacks and queues via graph layouts , 1992 .

[63]  Jorge Urrutia,et al.  Light sources, obstructions and spherical orders , 1992, Discret. Math..

[64]  Andrzej Kisielewicz,et al.  The Complexity of Upward Drawings on Spheres , 1997 .

[65]  David R. Wood,et al.  On Linear Layouts of Graphs , 2004, Discret. Math. Theor. Comput. Sci..

[66]  Miki Miyauchi Topological Book Embedding of Bipartite Graphs , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[67]  Franz-Josef Brandenburg A Note on: 'Deque Automata and a Subfamily of Context-Sensitive Languages which Contains All Semilinear Bounded Languages' , 1987, Theor. Comput. Sci..

[68]  Amir Pnueli,et al.  Permutation Graphs and Transitive Graphs , 1972, JACM.

[69]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[70]  Lenwood S. Heath,et al.  Stack and Queue Layouts of Directed Acyclic Graphs: Part I , 1999, SIAM J. Comput..

[71]  Mihalis Yannakakis,et al.  Embedding Planar Graphs in Four Pages , 1989, J. Comput. Syst. Sci..

[72]  Stephan Kreutzer,et al.  On the Parameterized Intractability of Monadic Second-Order Logic , 2009, Log. Methods Comput. Sci..

[73]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[74]  A. Itai,et al.  QUEUES, STACKS AND GRAPHS , 1971 .

[75]  Franz-Josef Brandenburg,et al.  Upward planar drawings on the standing and the rolling cylinders , 2014, Comput. Geom..

[76]  Giuseppe Di Battista,et al.  Drawing Trees, Outerplanar Graphs, Series-Parallel Graphs, and Planar Graphs in a Small Area , 2013 .

[77]  Christian Bachmaier,et al.  Rolling Upward Planarity Testing of Strongly Connected Graphs , 2013, WG.

[78]  Andrzej Proskurowski,et al.  On Halin graphs , 1983 .

[79]  Vaughan R. Pratt,et al.  Computing permutations with double-ended queues, parallel stacks and parallel queues , 1973, STOC.

[80]  Kristoffer Arnsfelt Hansen Constant Width Planar Computation Characterizes ACC0 , 2005, Theory of Computing Systems.

[81]  Walter Ukovich,et al.  A Mathematical Model for Periodic Scheduling Problems , 1989, SIAM J. Discret. Math..

[82]  Carlo Mannino,et al.  Optimal Upward Planarity Testing of Single-Source Digraphs , 1993, ESA.

[83]  Ardeshir Dolati Digraph Embedding on Th , 2008, CTW.

[84]  Egon Wanke,et al.  How to Solve NP-hard Graph Problems on Clique-Width Bounded Graphs in Polynomial Time , 2001, WG.

[85]  Kathleen Ayers Deque Automata and a Subfamily of Context-Sensitive Languages which Contains all Semilinear Bounded Languages , 1985, Theor. Comput. Sci..

[86]  Wolfgang Brunner Cyclic level drawings of directed graphs , 2010 .

[87]  Hikoe Enomoto,et al.  On the Pagenumber of Complete Bipartite Graphs , 1997, J. Comb. Theory, Ser. B.

[88]  S. Rao Kosaraju,et al.  Real-time simulation of concatenable double-ended queues by double-ended queues (Preliminary Version) , 1979, STOC.

[89]  W. T. Tutte How to Draw a Graph , 1963 .

[90]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[91]  Ardeshir Dolati,et al.  On the sphericity testing of single source digraphs , 2008, Discret. Math..

[92]  Manfred Wiegers,et al.  Recognizing Outerplanar Graphs in Linear Time , 1986, WG.

[93]  Wei-Kuan Shih,et al.  A New Planarity Test , 1999, Theor. Comput. Sci..

[94]  Lenwood S. Heath,et al.  Stack and Queue Layouts of Directed Acyclic Graphs: Part II , 1999, SIAM J. Comput..

[95]  Fabrizio Frati On Minimum Area Planar Upward Drawings of Directed Trees and Other Families of Directed Acyclic Graphs , 2008, Int. J. Comput. Geom. Appl..

[96]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[97]  B. Marx The Visual Display of Quantitative Information , 1985 .

[98]  Frank Harary,et al.  Trees with Hamiltonian square , 1971 .

[99]  Ioannis G. Tollis,et al.  Area requirement and symmetry display of planar upward drawings , 1992, Discret. Comput. Geom..

[100]  T. Bilski Embedding graphs in books: a survey , 1992 .

[101]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[102]  Petra Mutzel,et al.  A Linear Time Implementation of SPQR-Trees , 2000, GD.

[103]  Achilleas Papakostas,et al.  Upward Planarity Testing of Outerplanar Dags ( Extended Abstract ) , 2005 .

[104]  Hiroshi Nagamochi,et al.  Two-page Book Embedding and Clustered Graph Planarity , 2009 .

[105]  MICHAEL D. HUTTON,et al.  Upward planar drawing of single source acyclic digraphs , 1991, SODA '91.

[106]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[107]  C. Lucchesi,et al.  A Minimax Theorem for Directed Graphs , 1978 .

[108]  M. Hazewinkel Encyclopaedia of mathematics , 1987 .

[109]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[110]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[111]  Pierre Rosenstiehl,et al.  A Depth-First-Search Characterization of Planarity , 1982 .

[112]  Eugene L. Lawler,et al.  The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1985 .

[113]  Mihalis Yannakakis,et al.  Four pages are necessary and sufficient for planar graphs , 1986, Symposium on the Theory of Computing.

[114]  Christian Bachmaier,et al.  Drawing Recurrent Hierarchies , 2012, J. Graph Algorithms Appl..

[115]  Lenwood S. Heath,et al.  The pagenumber of genus g graphs is O(g) , 1992, JACM.

[116]  David R. Wood,et al.  Stacks, Queues and Tracks: Layouts of Graph Subdivisions , 2005, Discret. Math. Theor. Comput. Sci..

[117]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[118]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[119]  Tae-Eog Lee,et al.  The complexity of cyclic shop scheduling problems , 2002 .

[120]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[121]  Christian Bachmaier,et al.  Global k-Level Crossing Reduction , 2011, J. Graph Algorithms Appl..

[122]  E. V. Huntington A Set of Independent Postulates for Cyclic Order. , 1916, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Udi Rotics,et al.  On the Relationship Between Clique-Width and Treewidth , 2001, SIAM J. Comput..

[124]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[125]  Fabrizio Frati,et al.  On the Page Number of Upward Planar Directed Acyclic Graphs , 2011, J. Graph Algorithms Appl..

[126]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XII: planar graphs and planar maps , 2000, Theor. Comput. Sci..

[127]  Holger Petersen,et al.  Stacks versus Deques , 2001, COCOON.

[128]  Ioannis G. Tollis,et al.  How to Draw a Series-Parallel Digraph , 1994, Int. J. Comput. Geom. Appl..

[129]  Franz-Josef Brandenburg,et al.  Multiple Equality Sets and Post Machines , 1980, J. Comput. Syst. Sci..