Planar graphs and their duals on cylinder surfaces
暂无分享,去创建一个
[1] G. Battista,et al. Hierarchies and planarity theory , 1988, IEEE Trans. Syst. Man Cybern..
[2] David Kelly. Fundamentals of planar ordered sets , 1987, Discret. Math..
[3] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[4] Christian Bachmaier,et al. The Duals of Upward Planar Graphs on Cylinders , 2012, WG.
[5] Ardeshir Dolati,et al. On the Upward Embedding on the Torus , 2008 .
[6] Meena Mahajan,et al. Upper Bounds for Monotone Planar Circuit Value and Variants , 2009, computational complexity.
[7] David R. Wood,et al. Three-Dimensional Grid Drawings with Sub-quadratic Volume , 2003, GD.
[8] Christian Bachmaier,et al. Linear Time Planarity Testing and Embedding of Strongly Connected Cyclic Level Graphs , 2008, ESA.
[9] Arnold L. Rosenberg,et al. The Diogenes Approach to Testable Fault-Tolerant Arrays of Processors , 1983, IEEE Transactions on Computers.
[10] P. Rosenstiehl. Solution algébrique du problème de Gauss sur la permutation des points d'intersection d'une ou plusieurs courbes fermées du plan , 1976 .
[11] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[12] Walter Unger,et al. The Complexity of Colouring Circle Graphs (Extended Abstract) , 1992, STACS.
[13] William S. Massey,et al. Algebraic Topology: An Introduction , 1977 .
[14] Îáá Íâåçîá Þ Ü Ý ¸ Èì Åçêáae Ü Ý,et al. Layout of Graphs with Bounded Tree-Width , 2004 .
[15] Roland Vollmar,et al. Über einen Automaten mit Pufferspeicherung , 1970, Computing.
[16] Patrick Healy,et al. Two Fixed-parameter Tractable Algorithms for Testing Upward Planarity , 2006, Int. J. Found. Comput. Sci..
[17] Andreas Gleißner,et al. Characterizations of Deque and Queue Graphs , 2011, WG.
[18] Arnold L. Rosenberg,et al. Embedding graphs in books: a layout problem with applications to VLSI design , 1985 .
[19] Carsten Maple,et al. Planarity testing for graphs represented by a rotation scheme , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..
[20] Walter Didimo,et al. Upward Spirality and Upward Planarity Testing , 2005, SIAM J. Discret. Math..
[21] Rolf Niedermeier,et al. Invitation to Fixed-Parameter Algorithms , 2006 .
[22] Michael Jünger,et al. Level Planar Embedding in Linear Time , 1999, Graph Drawing.
[23] Ingo Wegener,et al. Complexity theory - exploring the limits of efficient algorithms , 2005 .
[24] Giuseppe Di Battista,et al. Bipartite Graphs, Upward Drawings, and Planarity , 1990, Inf. Process. Lett..
[25] Christian Bachmaier,et al. Classification of Planar Upward Embedding , 2011, Graph Drawing.
[26] Miklós Bóna,et al. A Survey of Stack-Sorting Disciplines , 2003, Electron. J. Comb..
[27] Christian Bachmaier,et al. Cyclic Leveling of Directed Graphs , 2009, GD.
[28] Ulrik Brandes,et al. Centrality in Policy Network Drawings , 1999, GD.
[29] Frank Harary,et al. The number of caterpillars , 1973, Discret. Math..
[30] Franz-Josef Brandenburg,et al. Equality Sets and Complexity Classes , 1980, SIAM J. Comput..
[31] Christian Bachmaier,et al. A Radial Adaptation of the Sugiyama Framework for Visualizing Hierarchical Information , 2007, IEEE Transactions on Visualization and Computer Graphics.
[32] H. Whitney. Non-Separable and Planar Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.
[33] Roberto Tamassia,et al. On-Line Planarity Testing , 1989, SIAM J. Comput..
[34] Franz-Josef Brandenburg,et al. Characterizing Planarity by the Splittable Deque , 2013, Graph Drawing.
[35] Robert E. Tarjan,et al. Sorting Using Networks of Queues and Stacks , 1972, J. ACM.
[36] Roberto Tamassia,et al. On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..
[37] Robert E. Tarjan,et al. Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..
[38] Peter W. Shor,et al. On the pagenumber of planar graphs , 1984, STOC '84.
[39] J. Hopcroft,et al. Efficient algorithms for graph manipulation , 1971 .
[40] János Pach,et al. On the Queue Number of Planar Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[41] Yubao Guo,et al. Hamiltonicity of maximal planar graphs and planar triangulations , 2007 .
[42] Sebastian Vetter,et al. Testing Planarity by Switching Trains , 2012, Graph Drawing.
[43] David Eppstein,et al. Fixed Parameter Tractability of Crossing Minimization of Almost-Trees , 2013, GD.
[44] Arnold L. Rosenberg,et al. Comparing Queues and Stacks as Mechanisms for Laying out Graphs , 1992, SIAM J. Discret. Math..
[45] Helen C. Purchase,et al. Which Aesthetic has the Greatest Effect on Human Understanding? , 1997, GD.
[46] Lenwood S. Heath. Embedding Planar Graphs in Seven Pages , 1984, FOCS.
[47] Paul C. Kainen,et al. Some recent results in topological graph theory , 1974 .
[48] Peter F. Stadler,et al. Relevant Cycles in Biopolymers and Random Graphs , 1999 .
[49] János Pach,et al. How to draw a planar graph on a grid , 1990, Comb..
[50] Meena Mahajan,et al. Evaluating Monotone Circuits on Cylinders, Planes and Tori , 2006, STACS.
[51] Lenwood S. Heath,et al. Laying out Graphs Using Queues , 1992, SIAM J. Comput..
[52] Ignaz Rutter,et al. Testing Mutual duality of Planar graphs , 2014, Int. J. Comput. Geom. Appl..
[53] Seth M. Malitz,et al. Genus g Graphs Have Pagenumber O(sqrt(g)) , 1994, J. Algorithms.
[54] Karsten Klein,et al. Planarity Testing and Optimal Edge Insertion with Embedding Constraints , 2006, J. Graph Algorithms Appl..
[55] Roberto Tamassia,et al. Algorithms for Plane Representations of Acyclic Digraphs , 1988, Theor. Comput. Sci..
[56] Jonathan L. Gross,et al. Topological Graph Theory , 1987, Handbook of Graph Theory.
[57] Carlo Mannino,et al. Upward drawings of triconnected digraphs , 2005, Algorithmica.
[58] Christian Bachmaier,et al. Plane Drawings of Queue and Deque Graphs , 2010, Graph Drawing.
[59] Walter Unger,et al. On the k-Colouring of Circle-Graphs , 1988, STACS.
[60] Robert E. Tarjan,et al. Gauss Codes, Planar Hamiltonian Graphs, and Stack-Sortable Permutations , 1984, J. Algorithms.
[61] David R. Wood,et al. Queue Layouts, Tree-Width, and Three-Dimensional Graph Drawing , 2002, FSTTCS.
[62] Sriram Venkata Pemmarju. Exploring the powers of stacks and queues via graph layouts , 1992 .
[63] Jorge Urrutia,et al. Light sources, obstructions and spherical orders , 1992, Discret. Math..
[64] Andrzej Kisielewicz,et al. The Complexity of Upward Drawings on Spheres , 1997 .
[65] David R. Wood,et al. On Linear Layouts of Graphs , 2004, Discret. Math. Theor. Comput. Sci..
[66] Miki Miyauchi. Topological Book Embedding of Bipartite Graphs , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[67] Franz-Josef Brandenburg. A Note on: 'Deque Automata and a Subfamily of Context-Sensitive Languages which Contains All Semilinear Bounded Languages' , 1987, Theor. Comput. Sci..
[68] Amir Pnueli,et al. Permutation Graphs and Transitive Graphs , 1972, JACM.
[69] Paul D. Seymour,et al. Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.
[70] Lenwood S. Heath,et al. Stack and Queue Layouts of Directed Acyclic Graphs: Part I , 1999, SIAM J. Comput..
[71] Mihalis Yannakakis,et al. Embedding Planar Graphs in Four Pages , 1989, J. Comput. Syst. Sci..
[72] Stephan Kreutzer,et al. On the Parameterized Intractability of Monadic Second-Order Logic , 2009, Log. Methods Comput. Sci..
[73] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[74] A. Itai,et al. QUEUES, STACKS AND GRAPHS , 1971 .
[75] Franz-Josef Brandenburg,et al. Upward planar drawings on the standing and the rolling cylinders , 2014, Comput. Geom..
[76] Giuseppe Di Battista,et al. Drawing Trees, Outerplanar Graphs, Series-Parallel Graphs, and Planar Graphs in a Small Area , 2013 .
[77] Christian Bachmaier,et al. Rolling Upward Planarity Testing of Strongly Connected Graphs , 2013, WG.
[78] Andrzej Proskurowski,et al. On Halin graphs , 1983 .
[79] Vaughan R. Pratt,et al. Computing permutations with double-ended queues, parallel stacks and parallel queues , 1973, STOC.
[80] Kristoffer Arnsfelt Hansen. Constant Width Planar Computation Characterizes ACC0 , 2005, Theory of Computing Systems.
[81] Walter Ukovich,et al. A Mathematical Model for Periodic Scheduling Problems , 1989, SIAM J. Discret. Math..
[82] Carlo Mannino,et al. Optimal Upward Planarity Testing of Single-Source Digraphs , 1993, ESA.
[83] Ardeshir Dolati. Digraph Embedding on Th , 2008, CTW.
[84] Egon Wanke,et al. How to Solve NP-hard Graph Problems on Clique-Width Bounded Graphs in Polynomial Time , 2001, WG.
[85] Kathleen Ayers. Deque Automata and a Subfamily of Context-Sensitive Languages which Contains all Semilinear Bounded Languages , 1985, Theor. Comput. Sci..
[86] Wolfgang Brunner. Cyclic level drawings of directed graphs , 2010 .
[87] Hikoe Enomoto,et al. On the Pagenumber of Complete Bipartite Graphs , 1997, J. Comb. Theory, Ser. B.
[88] S. Rao Kosaraju,et al. Real-time simulation of concatenable double-ended queues by double-ended queues (Preliminary Version) , 1979, STOC.
[89] W. T. Tutte. How to Draw a Graph , 1963 .
[90] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[91] Ardeshir Dolati,et al. On the sphericity testing of single source digraphs , 2008, Discret. Math..
[92] Manfred Wiegers,et al. Recognizing Outerplanar Graphs in Linear Time , 1986, WG.
[93] Wei-Kuan Shih,et al. A New Planarity Test , 1999, Theor. Comput. Sci..
[94] Lenwood S. Heath,et al. Stack and Queue Layouts of Directed Acyclic Graphs: Part II , 1999, SIAM J. Comput..
[95] Fabrizio Frati. On Minimum Area Planar Upward Drawings of Directed Trees and Other Families of Directed Acyclic Graphs , 2008, Int. J. Comput. Geom. Appl..
[96] Gregory Gutin,et al. Digraphs - theory, algorithms and applications , 2002 .
[97] B. Marx. The Visual Display of Quantitative Information , 1985 .
[98] Frank Harary,et al. Trees with Hamiltonian square , 1971 .
[99] Ioannis G. Tollis,et al. Area requirement and symmetry display of planar upward drawings , 1992, Discret. Comput. Geom..
[100] T. Bilski. Embedding graphs in books: a survey , 1992 .
[101] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[102] Petra Mutzel,et al. A Linear Time Implementation of SPQR-Trees , 2000, GD.
[103] Achilleas Papakostas,et al. Upward Planarity Testing of Outerplanar Dags ( Extended Abstract ) , 2005 .
[104] Hiroshi Nagamochi,et al. Two-page Book Embedding and Clustered Graph Planarity , 2009 .
[105] MICHAEL D. HUTTON,et al. Upward planar drawing of single source acyclic digraphs , 1991, SODA '91.
[106] K. Wagner. Über eine Eigenschaft der ebenen Komplexe , 1937 .
[107] C. Lucchesi,et al. A Minimax Theorem for Directed Graphs , 1978 .
[108] M. Hazewinkel. Encyclopaedia of mathematics , 1987 .
[109] Carsten Thomassen,et al. Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.
[110] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[111] Pierre Rosenstiehl,et al. A Depth-First-Search Characterization of Planarity , 1982 .
[112] Eugene L. Lawler,et al. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1985 .
[113] Mihalis Yannakakis,et al. Four pages are necessary and sufficient for planar graphs , 1986, Symposium on the Theory of Computing.
[114] Christian Bachmaier,et al. Drawing Recurrent Hierarchies , 2012, J. Graph Algorithms Appl..
[115] Lenwood S. Heath,et al. The pagenumber of genus g graphs is O(g) , 1992, JACM.
[116] David R. Wood,et al. Stacks, Queues and Tracks: Layouts of Graph Subdivisions , 2005, Discret. Math. Theor. Comput. Sci..
[117] Mitsuhiko Toda,et al. Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.
[118] Donald E. Knuth,et al. The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .
[119] Tae-Eog Lee,et al. The complexity of cyclic shop scheduling problems , 2002 .
[120] Paul C. Kainen,et al. The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.
[121] Christian Bachmaier,et al. Global k-Level Crossing Reduction , 2011, J. Graph Algorithms Appl..
[122] E. V. Huntington. A Set of Independent Postulates for Cyclic Order. , 1916, Proceedings of the National Academy of Sciences of the United States of America.
[123] Udi Rotics,et al. On the Relationship Between Clique-Width and Treewidth , 2001, SIAM J. Comput..
[124] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[125] Fabrizio Frati,et al. On the Page Number of Upward Planar Directed Acyclic Graphs , 2011, J. Graph Algorithms Appl..
[126] Bruno Courcelle,et al. The monadic second-order logic of graphs XII: planar graphs and planar maps , 2000, Theor. Comput. Sci..
[127] Holger Petersen,et al. Stacks versus Deques , 2001, COCOON.
[128] Ioannis G. Tollis,et al. How to Draw a Series-Parallel Digraph , 1994, Int. J. Comput. Geom. Appl..
[129] Franz-Josef Brandenburg,et al. Multiple Equality Sets and Post Machines , 1980, J. Comput. Syst. Sci..