Flutter Boundary Identification from Time-Domain Simulations Using the Matrix Pencil Method

ck Complex amplitude in a Prony series m Mass per unit span Iα Sectional moment of inertia L Matrix pencil parameter M Model order N Number of interpolated samples Sα Static unbalance sk Complex exponent in a Prony series Vs Flutter speed index M Prony series extraction matrix Y = UΣVT Singular value decomposition of the matrix Y ŷ Aeroelastic modal amplitude samples y Interpolated samples Y Matrix of interpolated sample values αk Damping of mode k in the Prony series Λ Diagonal matrix of eigenvalues/exponential terms M = ΨΛΦ Eigenvalue decomposition of the matrix M ρ Aggregation parameter ωk Frequency of mode k in the Prony series (·)+ Moore–Penrose inverse ◦ Hadamard component-wise product

[1]  Gene H. Golub,et al.  The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.

[2]  Manolis I. A. Lourakis,et al.  Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications , 2000, ECCV.

[3]  Marilyn J. Smith,et al.  A Robust and Flexible Coupling Framework for Aeroelastic Analysis and Optimization , 2017 .

[4]  D. Mavriplis,et al.  Time-Dependent Aeroelastic Adjoint-Based Aerodynamic Shape Optimization of Helicopter Rotors in Forward Flight , 2015 .

[5]  Koji Isogai,et al.  On the Transonic-Dip Mechanism of Flutter of a Sweptback Wing , 1979 .

[6]  Grigorios Dimitriadis,et al.  CUPyDO - An integrated Python environment for coupled fluid-structure simulations , 2019, Adv. Eng. Softw..

[7]  Marilyn J. Smith,et al.  Evaluation of time-domain damping identification methods for flutter-constrained optimization , 2019, Journal of Fluids and Structures.

[8]  W. K. Anderson,et al.  Recent improvements in aerodynamic design optimization on unstructured meshes , 2001 .

[9]  Graeme J. Kennedy,et al.  Efficient and Robust Load and Displacement Transfer Scheme Using Weighted Least Squares , 2019, AIAA Journal.

[10]  David P. Lockard,et al.  Re-evaluation of an Optimized Second Order Backward Difference (BDF2OPT) Scheme for Unsteady Flow Applications , 2010 .

[11]  Dimitri J. Mavriplis,et al.  Adjoint-Based Aeroacoustic Design-Optimization of Flexible Rotors in Forward Flight , 2017 .

[12]  Graeme J. Kennedy,et al.  Improved constraint-aggregation methods , 2015 .

[13]  Joaquim R. R. A. Martins,et al.  Structural and Multidisciplinary Optimization Manuscript No. Pyopt: a Python-based Object-oriented Framework for Nonlinear Constrained Optimization , 2022 .

[14]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[15]  K. J. Ray Liu,et al.  Spectral estimation based on structured low rank matrix pencil , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[16]  Kenneth C. Hall,et al.  A Time-Linearized Navier-Stokes Analysis of Stall Flutter , 1999 .

[17]  Her Mann Tsai,et al.  Calculation of Wing Flutter by a Coupled Fluid-Structure Method , 2001 .

[18]  Olivier A. Bauchau,et al.  Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations , 2017 .

[19]  Marilyn J. Smith,et al.  An Aeroelastic Coupling Framework for Time-accurate Analysis and Optimization , 2018 .

[20]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[21]  C. Farhat,et al.  Coupled Analytical Sensitivity Analysis and Optimization of Three-Dimensional Nonlinear Aeroelastic Systems , 2001 .

[22]  M. Giles Collected Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation , 2008 .

[23]  Juan J. Alonso,et al.  Fully-implicit time-marching aeroelastic solutions , 1994 .

[24]  Zhuang Biao,et al.  TRANSONIC FLUTTER ANALYSIS OF AN AIRFOIL WITH APPROXIMATE BOUNDARY METHOD , 2008 .

[25]  G. Kreisselmeier,et al.  SYSTEMATIC CONTROL DESIGN BY OPTIMIZING A VECTOR PERFORMANCE INDEX , 1979 .

[26]  Joaquim R. R. A. Martins,et al.  Flutter and post-flutter constraints in aircraft design optimization , 2019, Progress in Aerospace Sciences.

[27]  M. Giles An extended collection of matrix derivative results for forward and reverse mode algorithmic dieren tiation , 2008 .

[28]  Dimitri J. Mavriplis,et al.  Recent Advances in High-Fidelity Multidisciplinary Adjoint-Based Optimization with the NSU3D Flow Solver Framework , 2017 .

[29]  Mohammad Abu-Zurayk,et al.  Development and application of multi-disciplinary optimization capabilities based on high-fidelity methods , 2012 .

[30]  Jean-Antoine Désidéri,et al.  Aerostructural Adjoint Method for Flexible Wing Optimization , 2012 .

[31]  Boris Diskin,et al.  Discrete Adjoint-Based Design for Unsteady Turbulent Flows on Dynamic Overset Unstructured Grids , 2012 .

[32]  J. Alonso,et al.  A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .

[33]  K. Bathe Finite Element Procedures , 1995 .