Vesicular stomatitis virus G protein transmembrane region is crucial for the hemi-fusion to full fusion transition

[1]  K. Peden,et al.  Development of a micro-neutralization assay for ebolaviruses using a replication-competent vesicular stomatitis hybrid virus and a quantitative PCR readout. , 2017, Vaccine.

[2]  Antoine M. van Oijen,et al.  Mechanism of membrane fusion induced by vesicular stomatitis virus G protein , 2016, Proceedings of the National Academy of Sciences.

[3]  T. Rapoport,et al.  Fusion of the endoplasmic reticulum by membrane-bound GTPases. , 2016, Seminars in cell & developmental biology.

[4]  Yohei Yamauchi,et al.  Principles of Virus Uncoating: Cues and the Snooker Ball , 2016, Traffic.

[5]  Huan Bao,et al.  Exocytotic fusion pores are composed of both lipids and proteins , 2015, Nature Structural &Molecular Biology.

[6]  J. Freed,et al.  The Interaction between Influenza HA Fusion Peptide and Transmembrane Domain Affects Membrane Structure. , 2015, Biophysical journal.

[7]  B. Podbilewicz Virus and cell fusion mechanisms. , 2014, Annual review of cell and developmental biology.

[8]  J. L. Nieva,et al.  The three lives of viral fusion peptides , 2014, Chemistry and Physics of Lipids.

[9]  M. Wong,et al.  Genetic basis of cell-cell fusion mechanisms. , 2013, Trends in genetics : TIG.

[10]  A. Bax,et al.  pH-triggered, activated-state conformations of the influenza hemagglutinin fusion peptide revealed by NMR , 2012, Proceedings of the National Academy of Sciences.

[11]  R. Jahn,et al.  Molecular machines governing exocytosis of synaptic vesicles , 2012, Nature.

[12]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[13]  Frédéric Pincet,et al.  SNARE Proteins: One to Fuse and Three to Keep the Nascent Fusion Pore Open , 2012, Science.

[14]  J. Rothman,et al.  Induction of cortical endoplasmic reticulum by dimerization of a coatomer-binding peptide anchored to endoplasmic reticulum membranes , 2010, Proceedings of the National Academy of Sciences.

[15]  Reinhard Jahn,et al.  Helical extension of the neuronal SNARE complex into the membrane , 2009, Nature.

[16]  M. Kozlov,et al.  Mechanics of membrane fusion , 2008, Nature Structural &Molecular Biology.

[17]  S. Harrison Viral membrane fusion , 2008, Nature Structural &Molecular Biology.

[18]  E. Hunter,et al.  Role of the Membrane-Spanning Domain of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein in Cell-Cell Fusion and Virus Infection , 2008, Journal of Virology.

[19]  G. Whittaker,et al.  Molecular Architecture of the Bipartite Fusion Loops of Vesicular Stomatitis Virus Glycoprotein G, a Class III Viral Fusion Protein* , 2008, Journal of Biological Chemistry.

[20]  D. Chang,et al.  Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin and its fusion peptide complex. , 2008 .

[21]  Melike Lakadamyali,et al.  Imaging Poliovirus Entry in Live Cells , 2007, PLoS biology.

[22]  S. Roche,et al.  Structure of the Prefusion Form of the Vesicular Stomatitis Virus Glycoprotein G , 2007, Science.

[23]  S. Roche,et al.  Crystal Structure of the Low-pH Form of the Vesicular Stomatitis Virus Glycoprotein G , 2006, Science.

[24]  G. Melikyan,et al.  Time-resolved imaging of HIV-1 Env-mediated lipid and content mixing between a single virion and cell membrane. , 2005, Molecular biology of the cell.

[25]  J. Rothman,et al.  SNAREs can promote complete fusion and hemifusion as alternative outcomes , 2005, The Journal of cell biology.

[26]  M. Jackson,et al.  Transmembrane Segments of Syntaxin Line the Fusion Pore of Ca2+-Triggered Exocytosis , 2004, Science.

[27]  T. Kafri Gene delivery by lentivirus vectors an overview. , 2004, Methods in molecular biology.

[28]  M. Whitt,et al.  The Membrane-Proximal Region of Vesicular Stomatitis Virus Glycoprotein G Ectodomain Is Critical for Fusion and Virus Infectivity , 2003, Journal of Virology.

[29]  J. Rothman,et al.  Fusion of Cells by Flipped SNAREs , 2003, Science.

[30]  L. Juliano,et al.  Membrane Fusion Induced by Vesicular Stomatitis Virus Depends on Histidine Protonation* , 2003, The Journal of Biological Chemistry.

[31]  Thorsten Lang,et al.  Membrane fusion. , 2002, Current opinion in cell biology.

[32]  G. Basañez Membrane fusion: the process and its energy suppliers , 2002, Cellular and Molecular Life Sciences CMLS.

[33]  S. Roche,et al.  Characterization of the equilibrium between the native and fusion-inactive conformation of rabies virus glycoprotein indicates that the fusion complex is made of several trimers. , 2002, Virology.

[34]  Qiang Huang,et al.  The Role of the Transmembrane and of the Intraviral Domain of Glycoproteins in Membrane Fusion of Enveloped Viruses , 2000, Bioscience reports.

[35]  R. T. Armstrong,et al.  The Transmembrane Domain of Influenza Hemagglutinin Exhibits a Stringent Length Requirement to Support the Hemifusion to Fusion Transition , 2000, The Journal of cell biology.

[36]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[37]  D. Z. Cleverley,et al.  The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[39]  H. Maccioni,et al.  Chinese hamster ovary cells lacking GM1 and GD1a synthesize gangliosides upon transfection with human GM2 synthase. , 1997, Biochimica et biophysica acta.

[40]  H. Ghosh,et al.  Influence of membrane anchoring and cytoplasmic domains on the fusogenic activity of vesicular stomatitis virus glycoprotein G , 1997, Journal of virology.

[41]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[42]  J. White Membrane fusion. , 1992, Science.

[43]  J. Rose,et al.  A cell line expressing vesicular stomatitis virus glycoprotein fuses at low pH. , 1984, Science.