Texture development and anisotropic deformation of zircaloys

Abstract This paper is a review of the texture development in zirconium alloys (in the form of thick walled tube reduced extrusion or TREX, thin-walled tubing and sheets) of importance to light and heavy water nuclear reactor technology along with the resultant anisotropic mechanical properties. Quantitative characterization of texture and mechanical anisotropy are emphasized leading to procedures useful to fabricators in optimizing textures for good formability as well as for acceptable in-service performance. A brief history of the development of zirconium alloys is presented followed by texture development and characterization. Mechanical anisotropy is discussed in terms of transverse contractile strain ratios from which the formability ( B parameter) is derived. Results on the effect of annealing temperature as well as test temperature on anisotropy parameters are presented. The review concludes with a brief summary of texture effects on creep, stress corrosion cracking and hydride formation. Recent advances in fuel cladding bring out the challenges in characterizing the texture and anisotropy due to Nb additions and microstructural gradients in the new Zircaloys™ , 1 such as Zirlo™ , 2 , Duplex™ , 3 and Triclad ™ , 4 .

[1]  K. Murty Technological applications of crystallographic textures of zirconium alloys , 1991 .

[2]  K. Murty,et al.  LWR pellet-cladding interactions: Materials solutions to SCC , 2001 .

[3]  E. Tenckhoff Deformation mechanisms, texture, and anisotropy in zirconium and Zircaloy , 1988 .

[4]  Brent L. Adams,et al.  Analysis of Irradiation Growth and Multiaxial Deformation Behavior of Nuclear Fuel Cladding , 1979 .

[5]  E. Tenckhoff Review of Deformation Mechanisms, Texture, and Mechanical Anisotropy in Zirconium and Zirconium Base Alloys , 2005 .

[6]  K. Murty ZIRCALOY LIFE PREDICTION AND NEW GENERATION ZIRCALOYS FOR LWRS , 1997 .

[7]  K. Murty,et al.  Application of texture in predicting nuclear fuel cladding creep , 1988 .

[8]  R. Ballinger,et al.  The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2 , 1984 .

[9]  Jiawen He,et al.  Microstructure and mechanical behaviour of materials , 1986 .

[10]  J. Earthman,et al.  Effect of grain shape and texture on equi-biaxial creep of stress relieved and recrystallized zircaloy-4 , 1994 .

[11]  R. Krishnan,et al.  Zirconium alloys in nuclear technology , 1981, Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences.

[12]  Brent L. Adams,et al.  Biaxial creep of textured zircaloy II: Crystal mean plastic modelling , 1985 .

[13]  K. Murty,et al.  Biaxial creep of textured zircaloy I: Experimental and phenomenological descriptions , 1985 .

[14]  K. Murty,et al.  Effect of annealing temperature on yield anisotropy of ZIRCALOY-4 TREX , 1988 .

[15]  A. Kimura,et al.  Development of Fuel Clad Materials for High Burn-up Operation of LWR , 2005 .

[16]  H. Bunge Texture Analysis in Materials Science , 1982 .

[17]  R. Beauregard,et al.  Effect of Annealing Temperature on the Mechanical Properties of Zircaloy-4 Cladding , 1977 .

[18]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  E. Tenckhoff A Review of Texture and Texture Formation in Zircaloy Tubing , 1982 .

[20]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  R. G. Wheeler,et al.  MULTIAXIAL PLASTIC FLOW OF ZIRCALOY-2 DETERMINED FROM HARDNESS DATA , 1966 .

[22]  K. Murty,et al.  Creep and Yield Loci of Zircaloy Cladding at Elevated Temperatures , 1987 .

[23]  K. Murty Applications of Crystallographic Textures of Zirconium Alloys in the Nuclear Industry , 1989 .

[24]  K. Murty,et al.  Multiaxial Creep of Textured Zircaloy-4 , 1982 .

[25]  John W. Hutchinson,et al.  Creep and plasticity of hexagonal polycrystals as related to single crystal slip , 1977 .

[26]  J. Earthman,et al.  Effects of grain-shape anisotropy and texture on balanced-biaxial creep of Ti and Zr alloys , 1994 .

[27]  K. Murty,et al.  Localized plastic flow, anisotropic mechanical properties and crystallographic texture in Zircaloy sheet , 1989 .

[28]  K. Murty,et al.  A textural model for SCC susceptibility in HCP metals (Zircaloy) , 1978 .

[29]  K. Linga Murty,et al.  Nondestructive monitoring of structural materials using automated ball indentation (ABI) technique , 2004 .

[30]  J. Schemel,et al.  Zirconium in Nuclear Applications , 1974 .

[31]  E. Tenckhoff,et al.  Mechanical Properties, Anisotropy, and Microstructure of Zircaloy Canning Tubes , 1977 .

[32]  K. Murty,et al.  Effects of recrystallization and Nb additions on texture and mechanical anisotropy of Zircaloy , 1994 .

[33]  K. Fujita,et al.  Texture Control of Zircaloy Tubing During Tube Reduction , 1982 .

[34]  K. Murty Biaxial creep behavior of textured zircaloy tubing , 1992 .

[35]  Armijo Joseph Sam,et al.  Development of Zirconium—Barrier Fuel Cladding , 1994 .

[36]  H. G. Rickover,et al.  History of the development of zirconium alloys for use in nuclear reactors , 1975 .

[37]  K. Källström TEXTURE AND ANISOTROPY OF ZIRCONIUM IN RELATION TO PLASTIC DEFORMATION. , 1972 .