ISOSPIN MIXING IN THE VICINITY OF THE N = Z LINE

We present the isospin- and angular-momentum-projected nuclear density functional theory (DFT) and its applications to the isospin-breaking corrections to the superallowed β-decay rates in the vicinity of the N = Z line. A preliminary value obtained for the Cabibbo–Kobayashi–Maskawa matrix element, |Vud| = 0.97463(24), agrees well with the recent estimate by Towner and Hardy [Phys. Rev.C77, 025501 (2008)]. We also discuss new opportunities to study the symmetry energy by using the isospin-projected DFT.

[1]  R. Wyss,et al.  Probing the nuclear energy functional at band termination , 2005 .

[2]  P. Quentin,et al.  Nuclear ground-state properties and self-consistent calculations with the skyrme interaction: (I). Spherical description , 1975 .

[3]  J. Dobaczewski,et al.  Angular momentum projection of cranked Hartree-Fock states : Application to terminating bands in A ∼ 44 nuclei , 2007, 0707.3130.

[4]  A. Schwenk,et al.  Isospin-symmetry-breaking corrections to superallowed Fermi β decay: Radial excitations , 2009, 0910.2790.

[5]  Paul-Henri Heenen,et al.  Self-consistent mean-field models for nuclear structure , 2003 .

[6]  D. Lacroix,et al.  Configuration mixing within the energy density functional formalism: Removing spurious contributions from nondiagonal energy kernels , 2008, 0809.2041.

[7]  J. Hardy,et al.  Comparative tests of isospin-symmetry-breaking corrections to superallowed $0^+ -> 0^+$ nuclear $\beta$ decay , 2010, 1007.5343.

[8]  A. Poves,et al.  An isospin projected Hartree-Fock description of proton and neutron radii , 1982 .

[9]  M. Strayer,et al.  The Nuclear Many-Body Problem , 2004 .

[10]  Brown,et al.  Isospin-mixing corrections for fp-shell Fermi transitions. , 1995, Physical review. C, Nuclear physics.

[11]  Yu.I. Kharitonov,et al.  Isobaric spin in heavy nuclei , 1965 .

[12]  W. Nazarewicz,et al.  Isospin mixing in nuclei within the nuclear density functional theory. , 2009, Physical review letters.

[13]  J. Dobaczewski,et al.  Isospin-Symmetry Restoration Within the Nuclear Density Functional Theory: Formalism and Applications , 2009, 0912.4381.

[14]  J. C. Hardy,et al.  Improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi β decay , 2007, 0710.3181.

[15]  J. Dobaczewski,et al.  GLOBAL NUCLEAR STRUCTURE ASPECTS OF TENSOR INTERACTION , 2008, 0811.1139.

[16]  M. Kortelainen,et al.  Dependence of single-particle energies on coupling constants of the nuclear energy density functional , 2008, 0803.2291.

[17]  T. Duguet,et al.  ON THE BREAKING AND RESTORATION OF SYMMETRIES WITHIN THE NUCLEAR ENERGY DENSITY FUNCTIONAL FORMALISM , 2010, 1010.3830.

[18]  N. Auerbach Coulomb effects in nuclear structure , 1983 .

[19]  J. Dobaczewski,et al.  Isospin mixing in nuclei around N=Z and the superallowed beta-decay , 2010, 1010.3099.

[20]  N. Severijns,et al.  Test of the conserved vector current hypothesis in T=1/2 mirror transitions and new determination of |V ud|. , 2009, Physical review letters.

[21]  C. A. Engelbrecht,et al.  ISOSPIN POLARIZATION IN THE NUCLEAR MANY-BODY PROBLEM. , 1970 .

[22]  W. Nazarewicz,et al.  Gamow-Teller strength and the spin-isospin coupling constants of the Skyrme energy functional , 2001, nucl-th/0112056.

[23]  J. Meng,et al.  Isospin corrections for superallowed Fermi β decay in self-consistent relativistic random-phase approximation approaches , 2009, 0904.3673.