ISOSPIN MIXING IN THE VICINITY OF THE N = Z LINE
暂无分享,去创建一个
J. Dobaczewski | W. Nazarewicz | W. Nazarewicz | M. Borucki | J. Dobaczewski | W. Satula | M. Rafalski | M. Rafalski | M. Borucki | W. Satula
[1] R. Wyss,et al. Probing the nuclear energy functional at band termination , 2005 .
[2] P. Quentin,et al. Nuclear ground-state properties and self-consistent calculations with the skyrme interaction: (I). Spherical description , 1975 .
[3] J. Dobaczewski,et al. Angular momentum projection of cranked Hartree-Fock states : Application to terminating bands in A ∼ 44 nuclei , 2007, 0707.3130.
[4] A. Schwenk,et al. Isospin-symmetry-breaking corrections to superallowed Fermi β decay: Radial excitations , 2009, 0910.2790.
[5] Paul-Henri Heenen,et al. Self-consistent mean-field models for nuclear structure , 2003 .
[6] D. Lacroix,et al. Configuration mixing within the energy density functional formalism: Removing spurious contributions from nondiagonal energy kernels , 2008, 0809.2041.
[7] J. Hardy,et al. Comparative tests of isospin-symmetry-breaking corrections to superallowed $0^+ -> 0^+$ nuclear $\beta$ decay , 2010, 1007.5343.
[8] A. Poves,et al. An isospin projected Hartree-Fock description of proton and neutron radii , 1982 .
[9] M. Strayer,et al. The Nuclear Many-Body Problem , 2004 .
[10] Brown,et al. Isospin-mixing corrections for fp-shell Fermi transitions. , 1995, Physical review. C, Nuclear physics.
[11] Yu.I. Kharitonov,et al. Isobaric spin in heavy nuclei , 1965 .
[12] W. Nazarewicz,et al. Isospin mixing in nuclei within the nuclear density functional theory. , 2009, Physical review letters.
[13] J. Dobaczewski,et al. Isospin-Symmetry Restoration Within the Nuclear Density Functional Theory: Formalism and Applications , 2009, 0912.4381.
[14] J. C. Hardy,et al. Improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi β decay , 2007, 0710.3181.
[15] J. Dobaczewski,et al. GLOBAL NUCLEAR STRUCTURE ASPECTS OF TENSOR INTERACTION , 2008, 0811.1139.
[16] M. Kortelainen,et al. Dependence of single-particle energies on coupling constants of the nuclear energy density functional , 2008, 0803.2291.
[17] T. Duguet,et al. ON THE BREAKING AND RESTORATION OF SYMMETRIES WITHIN THE NUCLEAR ENERGY DENSITY FUNCTIONAL FORMALISM , 2010, 1010.3830.
[18] N. Auerbach. Coulomb effects in nuclear structure , 1983 .
[19] J. Dobaczewski,et al. Isospin mixing in nuclei around N=Z and the superallowed beta-decay , 2010, 1010.3099.
[20] N. Severijns,et al. Test of the conserved vector current hypothesis in T=1/2 mirror transitions and new determination of |V ud|. , 2009, Physical review letters.
[21] C. A. Engelbrecht,et al. ISOSPIN POLARIZATION IN THE NUCLEAR MANY-BODY PROBLEM. , 1970 .
[22] W. Nazarewicz,et al. Gamow-Teller strength and the spin-isospin coupling constants of the Skyrme energy functional , 2001, nucl-th/0112056.
[23] J. Meng,et al. Isospin corrections for superallowed Fermi β decay in self-consistent relativistic random-phase approximation approaches , 2009, 0904.3673.