Signal Processing, Optimization, Inverse Problems

信号処理工学は「生のデータから価値のある情報を引き出すための知や芸や技を創造・体系化するための総合科学」として成長し続け, 音声・音響・画像処理工学や情報通信工学などの基盤として重要な役割を担っている. 筆者は信号処理工学の進化が最適化や逆問題の深化と不可分であることを確信し, これらの隣接領域のアイデアを融合し, 応用価値の高い相乗効果を生むことを目標にしてきた. 本稿では, 信号処理工学とその周辺分野の魅力を広く読者に伝えることを目的とし, 筆者自身が関わった幾つかの研究事例を問題の背景や着想に至った経緯とともに易しく紹介している.

[1]  I. Yamada,et al.  NON-STRICTLY CONVEX MINIMIZATION OVER THE FIXED POINT SET OF AN ASYMPTOTICALLY SHRINKING NONEXPANSIVE MAPPING , 2002 .

[2]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[3]  Ali H. Sayed,et al.  Fundamentals Of Adaptive Filtering , 2003 .

[4]  Isao Yamada,et al.  Distributed Asymptotic Minimization of Sequences of Convex Functions by a Broadcast Adaptive Subgradient Method , 2011, IEEE Journal of Selected Topics in Signal Processing.

[5]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[6]  Isao Yamada,et al.  Robust Wideband Beamforming by the Hybrid Steepest Descent Method , 2007, IEEE Transactions on Signal Processing.

[7]  Isao Yamada,et al.  High-resolution estimation of the directions-of-arrival distribution by algebraic phase unwrapping algorithms , 2011, Multidimens. Syst. Signal Process..

[8]  Isao Yamada,et al.  An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques , 2002, IEEE Trans. Signal Process..

[9]  Gregory B. Passty Ergodic convergence to a zero of the sum of monotone operators in Hilbert space , 1979 .

[10]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[11]  Isao Yamada,et al.  Adaptive Parallel Quadratic-Metric Projection Algorithms , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[12]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[13]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[14]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[15]  P. Tseng Applications of splitting algorithm to decomposition in convex programming and variational inequalities , 1991 .

[16]  Isao Yamada,et al.  Stochastic MV-PURE Estimator— Robust Reduced-Rank Estimator for Stochastic Linear Model , 2009, IEEE Transactions on Signal Processing.

[17]  Sergios Theodoridis,et al.  Online Kernel-Based Classification Using Adaptive Projection Algorithms , 2008, IEEE Transactions on Signal Processing.

[18]  Isao Yamada,et al.  Steady-State Mean-Square Performance Analysis of a Relaxed Set-Membership NLMS Algorithm by the Energy Conservation Argument , 2009, IEEE Transactions on Signal Processing.

[19]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[20]  I. Yamada,et al.  Adaptive Projected Subgradient Method for Asymptotic Minimization of Sequence of Nonnegative Convex Functions , 2005 .

[21]  Isao Yamada,et al.  Minimizing the Moreau Envelope of Nonsmooth Convex Functions over the Fixed Point Set of Certain Quasi-Nonexpansive Mappings , 2011, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[22]  Isao Yamada,et al.  Minimum-Variance Pseudo-Unbiased Low-Rank Estimator for Ill-Conditioned Inverse Problems , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[23]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[24]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[25]  Georges Bienvenu Influence of the spatial coherence of the background noise on high resolution passive methods , 1979, ICASSP.

[26]  I. Yamada The Hybrid Steepest Descent Method for the Variational Inequality Problem over the Intersection of Fixed Point Sets of Nonexpansive Mappings , 2001 .

[27]  Bertolt Eicke Iteration methods for convexly constrained ill-posed problems in hilbert space , 1992 .

[28]  I. Yamada,et al.  Hybrid Steepest Descent Method for Variational Inequality Problem over the Fixed Point Set of Certain Quasi-nonexpansive Mappings , 2005 .

[29]  N. V. Tretyakov,et al.  Modified Lagrangians and Monotone Maps in Optimization , 1996 .

[30]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[31]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[32]  Isao Yamada,et al.  Multiaccess Interference Suppression in Orthogonal Space–Time Block Coded MIMO Systems by Adaptive Projected Subgradient Method , 2008, IEEE Transactions on Signal Processing.

[33]  A. Goldstein Convex programming in Hilbert space , 1964 .

[34]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[35]  功 山田 Nirmal Kumar Bose 先生を偲んで , 2010 .

[36]  Isao Yamada,et al.  Algebraic multidimensional phase unwrapping and zero distribution of complex polynomials-characterization of multivariate stable polynomials , 1998, IEEE Trans. Signal Process..

[37]  C. W. Groetsch,et al.  A Note on Segmenting Mann Iterates , 1972 .

[38]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[39]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[40]  J. Nagumo,et al.  A learning method for system identification , 1967, IEEE Transactions on Automatic Control.

[41]  Isao Yamada,et al.  Why the stochastic MV-PURE estimator excels in highly noisy situations? , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[42]  山田 功 最適化と信号処理(前編) : 射影勾配法の二つの一般化(技術解説) , 2009 .

[43]  Isao Yamada,et al.  Parallel algorithms for variational inequalities over the Cartesian product of the intersections of the fixed point sets of nonexpansive mappings , 2008, J. Approx. Theory.

[44]  I. Yamada A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems , 2002 .

[45]  Isao Yamada,et al.  MV-PURE Estimator: Minimum-Variance Pseudo-Unbiased Reduced-Rank Estimator for Linearly Constrained Ill-Conditioned Inverse Problems , 2008, IEEE Transactions on Signal Processing.

[46]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[47]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[48]  Silvia Gandy,et al.  Convex optimization techniques for the efficient recovery of a sparsely corrupted low-rank matrix , 2010 .

[49]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[50]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[51]  I. Yamada,et al.  The Adaptive Projected Subgradient Method over the Fixed Point Set of Strongly Attracting Nonexpansive Mappings , 2006 .

[52]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[53]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[54]  Sergios Theodoridis,et al.  Adaptive Learning in a World of Projections , 2011, IEEE Signal Processing Magazine.

[55]  Isao Yamada,et al.  Efficient Blind MAI Suppression in DS/CDMA Systems by Embedded Constraint Parallel Projection Techniques , 2005, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[56]  Isao Yamada,et al.  An Adaptive Projected Subgradient Approach to Learning in Diffusion Networks , 2009, IEEE Transactions on Signal Processing.

[57]  Isao Yamada,et al.  A multidimensional isomorphic operator and its properties-a proposal of finite-extent multidimensional cepstrum , 1994, IEEE Trans. Signal Process..

[58]  Mohamed-Jalal Fadili,et al.  Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity, by Jean-Luc Starck, Fionn Murtagh, and Jalal M. Fadili , 2010, J. Electronic Imaging.