Analyzing Binomial Data in a Split-Plot Design: Classical Approach or Modern Techniques?

Modeling data that are non-normally distributed with random effects is the major challenge in analyzing binomial data in split-plot designs. Seven methods for analyzing such data using mixed, generalized linear, or generalized linear mixed models are compared for the size and power of the tests. This study shows that analyzing random effects properly is more important than adjusting the analysis for non-normality. Methods based on mixed and generalized linear mixed models hold Type I error rates better than generalized linear models. Mixed model methods tend to have higher power than generalized linear mixed models when the sample size is small.

[1]  Stephen D. Kachman,et al.  AN INTRODUCTION TO GENERALIZED LINEAR MIXED MODELS , 2001 .

[2]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[3]  Ramon C. Littell,et al.  IMPACT OF VARIANCE COMPONENT ESTIMATES ON FIXED EFFECT INFERENCE IN UNBALANCED LINEAR MIXED MODELS , 2002 .

[4]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[5]  David R. Cox The analysis of binary data , 1970 .

[6]  Liang Fang,et al.  Activity of spinosad against adults of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) is not affected by wheat temperature and moisture , 2003 .

[7]  J. Nelder,et al.  Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood , 2006 .

[8]  Walter W. Stroup,et al.  SMALL SAMPLE POWER CHARACTERISTICS OF GENERALIZED MIXED MODEL PROCEDURES FOR BINARY REPEATED MEASURES DATA USING SAS , 2003 .

[9]  C. F. Jeff Wu,et al.  Experiments: Planning, Analysis, and Parameter Design Optimization , 2000 .

[10]  D. Collett,et al.  Modelling Binary Data , 1991 .

[11]  G. K. Kanji,et al.  Power Aspects of Split-plot Designs , 1984 .

[12]  D. E. Johnson,et al.  Analysis of Messy Data Volume I: Designed Experiments , 1985 .

[13]  Alan Agresti,et al.  Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies , 2004, Comput. Stat. Data Anal..

[14]  Josef Schmee,et al.  Analysis of Messy Data, Volume I: Designed Experiments , 1985 .

[15]  G. Verbeke,et al.  The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data , 1997 .

[16]  J. Neuhaus,et al.  Prediction of Random Effects in Linear and Generalized Linear Models under Model Misspecification , 2011, Biometrics.

[17]  Walter W. Stroup,et al.  A COMPARISON OF SOME METHODS TO ANALYZE REPEATED MEASURES ORDINAL CATEGORICAL DATA , 2001 .

[18]  A. Agresti An introduction to categorical data analysis , 1997 .

[19]  S. Wulff SAS for Mixed Models , 2007 .

[20]  L. Madden,et al.  New applications of statistical tools in plant pathology. , 2004, Phytopathology.

[21]  Bruce D.L. Fitt,et al.  Effects of temperature on germination and hyphal growth from ascospores of A-group and B-group Leptosphaeria maculans (phoma stem canker of oilseed rape). , 2001 .