An RNA pyrophosphohydrolase triggers 5'-exonucleolytic degradation of mRNA in Bacillus subtilis.

[1]  M. Kuwano,et al.  A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of messenger RNA. , 1979, Journal of molecular biology.

[2]  Stanley N Cohen,et al.  Partitioning of bacterial plasmids during cell division: a cis-acting locus that accomplishes stable plasmid inheritance , 1980, Cell.

[3]  H. Krisch,et al.  RNase E, an endoribonuclease, has a general role in the chemical decay of Escherichia coli mRNA: evidence that rne and ams are the same genetic locus , 1990, Molecular microbiology.

[4]  O. Melefors,et al.  Genetic studies of cleavage-initiated mRNA decay and processing of ribosomal 9S RNA show that the Escherichia coli ams and rne loci are the same. , 1991, Molecular microbiology.

[5]  S. R. Kushner,et al.  The Ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of Escherichia coli. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Miczak,et al.  The gene specifying RNase E (rne) and a gene affecting mRNA stability (ams) are the same gene , 1991, Molecular microbiology.

[7]  J. Belasco,et al.  A 5'-terminal stem-loop structure can stabilize mRNA in Escherichia coli. , 1992, Genes & development.

[8]  J. Belasco,et al.  Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coil , 1992, Nature.

[9]  M. Hecker,et al.  Temporal activation of beta-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool. , 1993, Journal of general microbiology.

[10]  A. Grossman,et al.  Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. , 1993, Genes & development.

[11]  Michael J. Hansen,et al.  The ompA 5′ untranslated region impedes a major pathway for mRNA degradation in Escherichia coli , 1994, Molecular microbiology.

[12]  R Parker,et al.  Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript. , 1994, Genes & development.

[13]  S. Cohen,et al.  A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. , 1994, The Journal of biological chemistry.

[14]  W. Haldenwang The sigma factors of Bacillus subtilis , 1995, Microbiological reviews.

[15]  E. Glatz,et al.  A dual role for the Bacillus subtilis glpD leader and the GlpP protein in the regulated expression of glpD: antitermination and control of mRNA stability , 1996, Molecular microbiology.

[16]  G. F. Joyce,et al.  A general purpose RNA-cleaving DNA enzyme. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Yu,et al.  mRNA stabilization by the ompA 5' untranslated region: two protective elements hinder distinct pathways for mRNA degradation. , 1998, RNA.

[18]  G. Mackie Ribonuclease E is a 5′-end-dependent endonuclease , 1998, Nature.

[19]  T. Dunckley,et al.  The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif , 1999, The EMBO journal.

[20]  G. Mackie,et al.  Action of RNase II and Polynucleotide Phosphorylase against RNAs Containing Stem-Loops of Defined Structure , 2000, Journal of bacteriology.

[21]  P. Joseph,et al.  Rapid orientated cloning in a shuttle vector allowing modulated gene expression in Bacillus subtilis. , 2001, FEMS microbiology letters.

[22]  M. Deutscher,et al.  Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. , 2001, Nucleic acids research.

[23]  G. Hambraeus,et al.  A 5' stem-loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. , 2002, Microbiology.

[24]  Kangseok Lee,et al.  RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli , 2002, Molecular microbiology.

[25]  G. Mackie,et al.  Ectopic RNase E sites promote bypass of 5′‐end‐dependent mRNA decay in Escherichia coli , 2002, Molecular microbiology.

[26]  M. Bessman,et al.  Gene ytkD of Bacillus subtilis Encodes an Atypical Nucleoside Triphosphatase Member of the Nudix Hydrolase Superfamily , 2004, Journal of bacteriology.

[27]  M. Pedraza-Reyes,et al.  The ytkD (mutTA) Gene of Bacillus subtilis Encodes a Functional Antimutator 8-Oxo-(dGTP/GTP)ase and Is under Dual Control of Sigma A and Sigma F RNA Polymerases , 2004, Journal of bacteriology.

[28]  A. McLennan,et al.  The Nudix hydrolase superfamily , 2005, Cellular and Molecular Life Sciences CMLS.

[29]  M. Massiah,et al.  Structures and mechanisms of Nudix hydrolases. , 2005, Archives of biochemistry and biophysics.

[30]  O. Pellegrini,et al.  Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E , 2005, Nucleic acids research.

[31]  W. Scott,et al.  Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover , 2005, Nature.

[32]  D. Bechhofer,et al.  Effect of 5′‐proximal elements on decay of a model mRNA in Bacillus subtilis , 2005, Molecular microbiology.

[33]  M. Deutscher,et al.  Substrate Recognition and Catalysis by the Exoribonuclease RNase R* , 2006, Journal of Biological Chemistry.

[34]  Jeff Errington,et al.  Functional analysis of 11 putative essential genes in Bacillus subtilis. , 2006, Microbiology.

[35]  O. Pellegrini,et al.  Maturation of the 5′ end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1 , 2007, Molecular microbiology.

[36]  H. Čelešnik,et al.  Initiation of RNA decay in Escherichia coli by 5' pyrophosphate removal. , 2007, Molecular cell.

[37]  Irnov Irnov,et al.  Mechanism of mRNA destabilization by the glmS ribozyme. , 2007, Genes & development.

[38]  O. Pellegrini,et al.  5′-to-3′ Exoribonuclease Activity in Bacteria: Role of RNase J1 in rRNA Maturation and 5′ Stability of mRNA , 2007, Cell.

[39]  S. Yao,et al.  Analysis of mRNA decay in Bacillus subtilis. , 2008, Methods in enzymology.

[40]  G. Homuth,et al.  mRNA processing by RNases J1 and J2 affects Bacillus subtilis gene expression on a global scale , 2008, Molecular microbiology.

[41]  Bastien Chevreux,et al.  The Origins of 168, W23, and Other Bacillus subtilis Legacy Strains , 2008, Journal of bacteriology.

[42]  D. Bechhofer,et al.  Role of Bacillus subtilis RNase J1 Endonuclease and 5′-Exonuclease Activities in trp Leader RNA Turnover* , 2008, Journal of Biological Chemistry.

[43]  S. Yao,et al.  Erythromycin‐induced ribosome stalling and RNase J1‐mediated mRNA processing in Bacillus subtilis , 2008, Molecular microbiology.

[44]  H. Čelešnik,et al.  PABLO analysis of RNA: 5'-phosphorylation state and 5'-end mapping. , 2008, Methods in enzymology.

[45]  H. Putzer,et al.  Structural insights into the dual activity of RNase J , 2008, Nature Structural &Molecular Biology.

[46]  H. Čelešnik,et al.  Chapter 5 PABLO Analysis of RNA , 2008 .

[47]  H. Čelešnik,et al.  The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal , 2008, Nature.

[48]  S. Yao,et al.  Bacillus subtilis RNase J1 endonuclease and 5' exonuclease activities in the turnover of DeltaermC mRNA. , 2009, RNA.

[49]  C. Condon,et al.  Ribosomes initiating translation of the hbs mRNA protect it from 5′‐to‐3′ exoribonucleolytic degradation by RNase J1 , 2009, Molecular microbiology.

[50]  H. Putzer,et al.  RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis , 2009, The EMBO journal.

[51]  U. Völker,et al.  Novel Activities of Glycolytic Enzymes in Bacillus subtilis , 2009, Molecular & Cellular Proteomics.

[52]  S. Yao,et al.  Initiation of Decay of Bacillus subtilis rpsO mRNA by Endoribonuclease RNase Y , 2010, Journal of bacteriology.

[53]  J. Belasco All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay , 2010, Nature Reviews Molecular Cell Biology.

[54]  C. Condon,et al.  Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour , 2010, Molecular microbiology.

[55]  M. Malecki,et al.  The critical role of RNA processing and degradation in the control of gene expression. , 2010, FEMS microbiology reviews.

[56]  M. Kiledjian,et al.  Multiple mRNA decapping enzymes in mammalian cells. , 2010, Molecular cell.