A careful disorderliness in the proteome: Sites for interaction and targets for future therapies

[1]  Richard J. Edwards,et al.  SLiMFinder: A Probabilistic Method for Identifying Over-Represented, Convergently Evolved, Short Linear Motifs in Proteins , 2007, PloS one.

[2]  C. Griesinger,et al.  Structural characterization of the intrinsically unfolded protein β-synuclein, a natural negative regulator of α-synuclein aggregation , 2007 .

[3]  Kengo Kinoshita,et al.  PrDOS: prediction of disordered protein regions from amino acid sequence , 2007, Nucleic Acids Res..

[4]  A. Fersht,et al.  Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53 , 2007, Proceedings of the National Academy of Sciences.

[5]  István Simon,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm035 Structural bioinformatics Local structural disorder imparts plasticity on linear motifs , 2022 .

[6]  C. Griesinger,et al.  Structural characterization of the intrinsically unfolded protein beta-synuclein, a natural negative regulator of alpha-synuclein aggregation. , 2007, Journal of molecular biology.

[7]  Michail Yu. Lobanov,et al.  FoldUnfold: web server for the prediction of disordered regions in protein chain , 2006, Bioinform..

[8]  N. Isaacs,et al.  Delineation of protein structure classes from multivariate analysis of protein Raman optical activity data. , 2006, Journal of molecular biology.

[9]  Victor Neduva,et al.  Peptides mediating interaction networks: new leads at last. , 2006, Current opinion in biotechnology.

[10]  Marc S. Cortese,et al.  Rational drug design via intrinsically disordered protein. , 2006, Trends in biotechnology.

[11]  Yu-Yen Ou,et al.  Protein disorder prediction by condensed PSSM considering propensity for order or disorder , 2006, BMC Bioinformatics.

[12]  Peter E Wright,et al.  Structural Basis for Cooperative Transcription Factor Binding to the CBP Coactivator , 2005, Journal of molecular biology.

[13]  Zoran Obradovic,et al.  Length-dependent prediction of protein intrinsic disorder , 2006, BMC Bioinformatics.

[14]  T. Gibson,et al.  Systematic Discovery of New Recognition Peptides Mediating Protein Interaction Networks , 2005, PLoS biology.

[15]  Christopher J. Oldfield,et al.  Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling , 2005, Journal of molecular recognition : JMR.

[16]  Zsuzsanna Dosztányi,et al.  IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content , 2005, Bioinform..

[17]  Zheng Rong Yang,et al.  RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins , 2005, Bioinform..

[18]  L. Vassilev p53 Activation by small molecules: application in oncology. , 2005, Journal of medicinal chemistry.

[19]  T. Creamer,et al.  Urea promotes polyproline II helix formation: implications for protein denatured states. , 2005, Biochemistry.

[20]  P. Radivojac,et al.  PROTEINS: Structure, Function, and Bioinformatics Suppl 7:176–182 (2005) Exploiting Heterogeneous Sequence Properties Improves Prediction of Protein Disorder , 2022 .

[21]  J. Sussman,et al.  The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix , 2013 .

[22]  Bernard F. Buxton,et al.  The DISOPRED server for the prediction of protein disorder , 2004, Bioinform..

[23]  Thermodynamic mechanism and consequences of the polyproline II (PII) structural bias in the denatured states of proteins. , 2004, Biochemistry.

[24]  Nikolaj Blom,et al.  Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins , 2004, BMC Bioinformatics.

[25]  Peter E Wright,et al.  Interaction of the TAZ1 Domain of the CREB-Binding Protein with the Activation Domain of CITED2 , 2004, Journal of Biological Chemistry.

[26]  T. Gibson,et al.  Protein disorder prediction: implications for structural proteomics. , 2003, Structure.

[27]  Leszek Rychlewski,et al.  ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins , 2003, Nucleic Acids Res..

[28]  Johannes Buchner,et al.  p53 contains large unstructured regions in its native state. , 2002, Journal of molecular biology.

[29]  R. Kriwacki,et al.  Defining the molecular basis of Arf and Hdm2 interactions. , 2001, Journal of molecular biology.

[30]  V. Uversky,et al.  Evidence for a Partially Folded Intermediate in α-Synuclein Fibril Formation* , 2001, The Journal of Biological Chemistry.

[31]  C. Brown,et al.  Intrinsic protein disorder in complete genomes. , 2000, Genome informatics. Workshop on Genome Informatics.

[32]  H. Dyson,et al.  Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. , 1999, Journal of molecular biology.

[33]  Obradovic,et al.  Predicting Disordered Regions from Amino Acid Sequence: Common Themes Despite Differing Structural Characterization. , 1998, Genome informatics. Workshop on Genome Informatics.

[34]  A K Dunker,et al.  Thousands of proteins likely to have long disordered regions. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[35]  T. Gibson,et al.  Applying motif and profile searches. , 1996, Methods in enzymology.

[36]  R. Doolittle,et al.  Structural aspects of the fibrinogen to fibrin conversion. , 1973, Advances in protein chemistry.

[37]  Linus Pauling,et al.  "A Theory of the Structure and Process of Formation of Antibodies" (pages 26-32) , 1940 .