Ordered arrays of bottom-up III-nitride core-shell nanostructures

The growth of ordered arrays of group III-nitride nanostructures on c-plane gallium nitride (GaN) on sapphire using selective-area metal organic chemical vapor deposition (MOCVD) is presented. The growth of these nanostructures promotes strain relaxation that allows the combination of high indium content active regions with very low dislocation densities and also gives access to nonpolar and semipolar crystallographic orientations of GaN. The influence of the starting template and the growth conditions on the growth rate and morphology is discussed. The growth of indium gallium nitride (InGaN) active region shells on these nanostructures is discussed and the stability of various crystallographic orientations under typical growth conditions is studied. Finally, the effect of the growth conditions on the morphology of pyramidal stripe LEDs is discussed and preliminary results on electrical injection of these LEDs are presented.

[1]  James S. Speck,et al.  Electrical characterization of GaN p-n junctions with and without threading dislocations , 1998 .

[2]  Sébastien Chenot,et al.  Selective area growth of Ga‐polar GaN nanowire arrays by continuous‐flow MOVPE: A systematic study on the effect of growth conditions on the array properties , 2015 .

[3]  S. Reitzenstein,et al.  Direct comparison of catalyst-free and catalyst-induced GaN nanowires , 2010 .

[4]  Z. Mi,et al.  Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. , 2015, Nature nanotechnology.

[5]  Ting-Wei Yeh,et al.  Mechanism of selective area growth of GaN nanorods by pulsed mode metalorganic chemical vapor deposition , 2012, Nanotechnology.

[6]  Xin Wang,et al.  Effect of threading defects on InGaN∕GaN multiple quantum well light emitting diodes , 2007 .

[7]  Kai Cui,et al.  Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. , 2011, Nano letters.

[8]  Eric A Stach,et al.  Dislocation filtering in GaN nanostructures. , 2010, Nano letters.

[9]  Shuji Nakamura,et al.  InGaN-based violet laser diodes , 1999 .

[10]  D. Kim,et al.  High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays , 2004 .

[11]  Michael N. Fairchild,et al.  Threading defect elimination in GaN nanowires , 2011 .

[12]  P. Daniel Dapkus,et al.  Catalyst‐Free GaN Nanorods Synthesized by Selective Area Growth , 2014 .

[13]  A. Waag,et al.  Continuous-Flow MOVPE of Ga-Polar GaN Column Arrays and Core–Shell LED Structures , 2013 .

[14]  H. Amano,et al.  Morphology development of GaN nanowires using a pulsed-mode MOCVD growth technique , 2014 .

[15]  George T. Wang,et al.  Strain influenced indium composition distribution in GaN/InGaN core-shell nanowires , 2010 .

[16]  Jeremy B. Wright,et al.  Controlled Growth of Ordered III-Nitride Core–Shell Nanostructure Arrays for Visible Optoelectronic Devices , 2015, Journal of Electronic Materials.

[17]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[18]  K. Bertness,et al.  Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy , 2008 .

[19]  C. D. Lee,et al.  Recent developments in surface studies of GaN and AlN , 2005 .

[20]  R. Songmuanga From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer , 2007 .

[21]  S. Hersee,et al.  The controlled growth of GaN nanowires. , 2006, Nano letters.

[22]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[23]  Charles M. Lieber,et al.  Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. , 2006, Nano letters.

[24]  Charles M. Lieber,et al.  Gallium Nitride Nanowire Nanodevices , 2002 .

[25]  Y. Kiang,et al.  Regularly-patterned nanorod light-emitting diode arrays grown with metalorganic vapor-phase epitaxy , 2015 .

[26]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[27]  S. Aloni,et al.  Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.

[28]  Michael N. Fairchild,et al.  GaN nanowire light emitting diodes based on templated and scalable nanowire growth , 2009 .

[29]  Michael N. Fairchild,et al.  Three-dimensional GaN templates for molecular beam epitaxy of nonpolar InGaN/GaN coaxial light-emitting diodes , 2013 .

[30]  Z. Mi,et al.  Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting , 2014, Nature Communications.

[31]  A. Tsatsul'nikov,et al.  Effect of hydrogen on anisotropy of the p-GaN growth rate in the case of side-wall MOCVD , 2008 .

[32]  M. Scheffler,et al.  Adatom diffusion at GaN (0001) and (0001̄) surfaces , 1998, cond-mat/9809006.

[33]  Bozhi Tian,et al.  Coaxial Group Iii#nitride Nanowire Photovoltaics , 2009 .

[34]  J. Melngailis,et al.  Diameter dependent transport properties of gallium nitride nanowire field effect transistors , 2007 .

[35]  T. Ito,et al.  Surface reconstruction and magnesium incorporation on semipolar GaN(11̄01) surfaces , 2010 .

[36]  Steven R. J. Brueck,et al.  Optical and Interferometric Lithography - Nanotechnology Enablers , 2005, Proceedings of the IEEE.

[37]  Jonathan J. Wierer,et al.  III-nitride core–shell nanowire arrayed solar cells , 2012, Nanotechnology.