Inferring large phylogenies: The big tree problem

14 Supertrees are phylogenetic trees whose topologies are derived from a set of 15 partially overlapping, smaller trees. Here we present a supertree for the order Primates, 16 constructed by analyzing source trees we binary-coded using Matrix Representation using 17 Parsimony analysis (MRP). The source trees are derived from previously published 18 studies, and are based on a variety of data types, reconstructed using a variety of 19 methods. In terms of the number of species included in the analysis, the composite 20 estimate presented here is the largest phylogeny of the Primates available to date; it is 21 well-resolved and generally fits with our understanding of the systematics of this order. 22 Areas with few or incongruent data are identified using strength-of-grouping and rQS 23 values. In addition to this updated topology, we present divergence dates estimated using 24 a new method that utilizes overlapping fossil-calibrated clock-like DNA sequence data. 25 For the nodes for which no molecular estimates are available we provide expected ages 26 under a pure birth model. We analyze the divergence date estimates and find that, overall, 27 the Order Primates has diversified at a constant rate of cladogenesis, though looked at in 28 more detail we note, in agreement with earlier studies, a significantly elevated rate in the 29 cercopithecines. 30

[1]  R M May,et al.  The reconstructed evolutionary process. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[2]  N. Saitou,et al.  Evolution of Rh Blood Group Genes Have Experienced Gene Conversions and Positive Selection , 1999, Journal of Molecular Evolution.

[3]  K. Nekaris,et al.  Evolutionary History of Lorisiform Primates , 1998, Folia Primatologica.

[4]  W. Maddison Gene Trees in Species Trees , 1997 .

[5]  J. Masters,et al.  Phylogenetic relationships among the galaginae as indicated by erythrocytic allozymes , 1994, Primates.

[6]  A. Meyer,et al.  Systematics of New World monkeys (Platyrrhini, Primates) based on 16S mitochondrial DNA sequences: a comparative analysis of different weighting methods in cladistic analysis. , 1995, Molecular phylogenetics and evolution.

[7]  M. Goodman,et al.  Molecular phylogeny of ateline new world monkeys (Platyrrhini, atelinae) based on gamma-globin gene sequences: evidence that brachyteles is the sister group of lagothrix. , 1999, Molecular phylogenetics and evolution.

[8]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[9]  Pan paniscus and hominoid phylogeny: morphological data, molecular data and "total evidence'. , 1997, Folia primatologica; international journal of primatology.

[10]  W. Messier,et al.  Episodic adaptive evolution of primate lysozymes , 1997, Nature.

[11]  C. Groves Systematics of tarsiers and lorises , 2007, Primates.

[12]  O. Pybus,et al.  An integrated framework for the inference of viral population history from reconstructed genealogies. , 2000, Genetics.

[13]  J. Faivovich A cladistic analysis of Scinax (Anura: Hylidae) , 2002, Cladistics : the international journal of the Willi Hennig Society.

[14]  George Gaylord Simpson,et al.  The Principles of Classification and a Classification of Mammals. , 1945 .

[15]  M. Hasegawa,et al.  Improved dating of the human/chimpanzee separation in the mitochondrial DNA tree: Heterogeneity among amino acid sites , 1995, Journal of Molecular Evolution.

[16]  Kate E. Jones,et al.  Supertrees are a necessary not-so-evil: a comment on Gatesy et al. , 2003, Systematic biology.

[17]  Mark S. Springer,et al.  Which Mammalian Supertree to Bark Up? , 2001, Science.

[18]  M. Ruvolo,et al.  Molecular phylogenetics and historical biogeography of east African chimpanzees , 1997 .

[19]  M. Ruvolo,et al.  Phylogenetic relationships of the New World monkeys (Primates, platyrrhini) based on nuclear G6PD DNA sequences. , 1999, Molecular phylogenetics and evolution.

[20]  K. Nixon The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis , 1999 .

[21]  N. M. Brooke,et al.  A molecular timescale for vertebrate evolution , 1998, Nature.

[22]  C. Groves,et al.  Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. , 1998, Molecular phylogenetics and evolution.

[23]  K. Chan,et al.  Whole-tree methods for detecting differential diversification rates. , 2002, Systematic biology.

[24]  Diana J. Kao,et al.  Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  John G. Fleagle,et al.  Primate Adaptation and Evolution , 1989 .

[26]  J. L. Gittleman,et al.  A complete phylogeny of the whales, dolphins and even‐toed hoofed mammals (Cetartiodactyla) , 2005, Biological reviews of the Cambridge Philosophical Society.

[27]  A. Purvis A composite estimate of primate phylogeny. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  J. Huelsenbeck Performance of Phylogenetic Methods in Simulation , 1995 .

[29]  J. L. Gittleman,et al.  Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) , 1999, Biological reviews of the Cambridge Philosophical Society.

[30]  A. Yoder Back to the future: A synthesis of strepsirrhine systematics , 1997 .

[31]  D. Penny,et al.  The Use of Tree Comparison Metrics , 1985 .

[32]  S. Boissinot,et al.  Mutation Pattern Variation Among Regions of the Primate Genome , 1997, Journal of Molecular Evolution.

[33]  J. Cheverud,et al.  Phenotypic covariance structure in tamarins (genus Saguinus): a comparison of variation patterns using matrix correlation and common principal component analysis. , 2000, American journal of physical anthropology.

[34]  R. Vos,et al.  Reconstructing Divergence Times for Supertrees , 2004 .

[35]  A. Purvis,et al.  Comparative Primate Socioecology: Phylogenetically independent comparisons and primate phylogeny , 1999 .

[36]  Hominoid phylogeny estimated by model selection using goodness of fit significance tests. , 1995, Molecular phylogenetics and evolution.

[37]  I. Tattersall,et al.  ‘Little Brown Lemurs’ of Northern Madagascar , 1998, Folia Primatologica.

[38]  B. Hall,et al.  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. , 1999, Molecular biology and evolution.

[39]  O. Bininda-Emonds,et al.  Properties of matrix representation with parsimony analyses. , 1998, Systematic biology.

[40]  C. Jaworski A reassessment of mammalian αA-crystallin sequences using DNA sequencing: Implications for anthropoid affinities of tarsier , 1995, Journal of Molecular Evolution.

[41]  C. Soligo,et al.  Nails and claws in primate evolution. , 1999, Journal of human evolution.

[42]  M. Ragan Phylogenetic inference based on matrix representation of trees. , 1992, Molecular phylogenetics and evolution.

[43]  M. Hamrick Pattern and process in the evolution of primate nails and claws. , 1999, Journal of human evolution.

[44]  Roderic D. M. Page,et al.  Modified Mincut Supertrees , 2002, WABI.

[45]  R. Martin Primate origins and evolution , 1990 .

[46]  J. Pastorini,et al.  Relationships among brown lemurs (Eulemur fulvus) based on mitochondrial DNA sequences. , 2000, Molecular phylogenetics and evolution.

[47]  Jörg U. Ganzhorn,et al.  Taxonomic Revision of Mouse Lemurs (Microcebus) in the Western Portions of Madagascar , 2000, International Journal of Primatology.

[48]  Charles Semple,et al.  A supertree method for rooted trees , 2000, Discret. Appl. Math..

[49]  S. Pääbo,et al.  Conflict Among Individual Mitochondrial Proteins in Resolving the Phylogeny of Eutherian Orders , 1998, Journal of Molecular Evolution.

[50]  P. Parham,et al.  Phylogenetic relationships of the callitrichinae (Platyrrhini, Primates) based on β2‐microglobulin DNA sequences , 1999, American journal of primatology.

[51]  M. Springer,et al.  A Critique of Matrix Representation with Parsimony Supertrees , 2004 .

[52]  Roderic D. M. Page,et al.  Phyloinformatics: Toward a Phylogenetic Database , 2005, Data Mining in Bioinformatics.

[53]  E. Paradis Detecting Shifts in Diversification Rates without Fossils , 1998, The American Naturalist.

[54]  M. Goodman,et al.  Update on the Phylogenetic Systematics of New World Monkeys: Further DNA Evidence for Placing the Pygmy Marmoset (Cebuella) within the Genus Callithrix , 1997, International Journal of Primatology.

[55]  K. Bremer,et al.  BRANCH SUPPORT AND TREE STABILITY , 1994 .

[56]  P. Gingerich,et al.  Time of origin of primates , 1994 .

[57]  M. Goodman,et al.  The place of Callimico goeldii in the Callitrichine phylogenetic tree: evidence from von Willebrand factor gene intron II sequences. , 1999, Molecular phylogenetics and evolution.