Temperature dependent analytical model for current-voltage characteristics of AlGaN/GaN power HEMT

Abstract A temperature dependent analytical model has been presented for AlGaN/GaN power high electron mobility transistor (HEMT) to predict the DC performance at elevated temperatures. In this model the effects of temperature on band gap energy, sheet carrier density, threshold voltage, carrier mobility, and saturation velocity are taken into consideration. Channel length modulation in the saturation region of operation and spontaneous and piezoelectric polarization induced charges at the AlGaN/GaN heterointerface are also included in this model. Temperature- and bias-dependent on-wafer current–voltage measurements from 300 K to 500 K were carried out to verify the developed model. DC measurements and model predictions are presented for an AlGaN/GaN power HEMT fabricated on SiC substrate. The developed model shows good agreement with the measured data for a wide range of temperatures.

[1]  M. Missous,et al.  Temperature dependence of the Schottky barrier in Al/AlGaAs metal‐semiconductor junctions , 1993 .

[2]  Amitava DasGupta,et al.  An analytical expression for sheet carrier concentration vs gate voltage for HEMT modelling , 1993 .

[3]  Syed K. Islam,et al.  AlGaN/GaN self-aligned MODFET with metal oxide gate for millimeter wave application , 2006, Microelectron. J..

[4]  F. N. Masana A new approach to the dynamic thermal modelling of semiconductor packages , 2001, Microelectron. Reliab..

[5]  Adrian M. Ionescu,et al.  Scalable general high voltage MOSFET model including quasi-saturation and self-heating effects , 2006 .

[6]  Peter M. Asbeck,et al.  Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors , 1997 .

[7]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[8]  Michael S. Shur,et al.  GaN based transistors for high power applications , 1998 .

[9]  K. Y. Tong,et al.  Numerical simulation of current–voltage characteristics of AlGaN/GaN HEMTs at high temperatures , 2005 .

[10]  S. Islam,et al.  Effect of Temperature Variation on the Characteristics of Microwave Power AlGaN/GaN MODFET , 2005 .

[11]  Umesh K. Mishra,et al.  GaN based microwave power HEMTs , 1998 .

[12]  2‐D analytical model for current–voltage characteristics and output conductance of AlGaN/GaN MODFET , 2001 .

[13]  J. Freeman,et al.  Channel temperature model for microwave AlGaN/GaN power HEMTs on SiC and sapphire , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[14]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[15]  Chian-Sern Chang,et al.  An analytic model for HEMT's using new velocity-field dependence , 1987, IEEE Transactions on Electron Devices.

[16]  R. L. Wierich,et al.  Computer simulation of instability and noise in high-power avalanche devices , 1973 .

[17]  K. Y. Tong,et al.  A thermal model for static current characteristics of AlGaN∕GaN high electron mobility transistors including self-heating effect , 2006 .

[18]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[19]  Yan Wang,et al.  2-D Analytical Model for Current–Voltage Characteristics and Transconductance of AlGaN/GaN MODFETs , 2008, IEEE Transactions on Electron Devices.

[20]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[21]  Jacek A. Majewski,et al.  Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures , 2002 .

[22]  Hadis Morkoç,et al.  Emerging gallium nitride based devices , 1995, Proc. IEEE.

[23]  Joan M. Redwing,et al.  Measurement of drift mobility in AlGaN/GaN heterostructure field-effect transistor , 1999 .

[24]  Michael E. Levinshtein,et al.  Carrier mobility model for GaN , 2003 .

[25]  Pyroelectric and Piezoelectric Properties of GaN-Based Materials , 1999 .

[26]  Qixin Guo,et al.  Temperature Dependence of Band Gap Change in InN and AlN , 1994 .

[27]  W. R. Curtice,et al.  A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers , 1985, 1985 IEEE MTT-S International Microwave Symposium Digest.

[28]  K. Webb,et al.  A temperature-dependent nonlinear analytic model for AlGaN-GaN HEMTs on SiC , 2004, IEEE Transactions on Microwave Theory and Techniques.

[29]  G. Simin,et al.  The 1.6-kV AlGaN/GaN HFETs , 2006, IEEE Electron Device Letters.

[30]  J. Zolper,et al.  Wide bandgap semiconductor microwave technologies: from promise to practice , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[31]  Y. Aoyagi,et al.  Influence of a piezoelectric field on the electron distribution in a double GaN/Al0.14Ga0.86N heterojunction , 1999 .

[32]  H. Morkoc,et al.  Current—Voltage and capacitance—Voltage characteristics of modulation-doped field-effect transistors , 1983, IEEE Transactions on Electron Devices.