Observation of anomalous phonon softening in bilayer graphene.

The interaction of electron-hole pairs with lattice vibrations exhibits a wealth of intriguing physical phenomena such as the renowned Kohn anomaly. Here we report the observation in bilayer graphene of an unusual phonon softening that provides the first experimental proof for another type of phonon anomaly. Similar to the Kohn anomaly, which is a logarithmic singularity in the phonon group velocity [W. Kohn, Phys. Rev. Lett. 2, 393 (1959)], the observed phonon anomaly exhibits a logarithmic singularity in the optical-phonon energy. Arising from a resonant electron-phonon coupling effect, the anomaly was also expected, albeit not observed, in monolayer graphene. We propose an explanation for why it is easier to observe in bilayer samples.

[1]  D. Basko,et al.  Interplay of Coulomb and electron-phonon interactions in graphene , 2007, 0709.1927.

[2]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[3]  H. R. Krishnamurthy,et al.  Probing zone-boundary optical phonons in doped graphene , 2007 .

[4]  T. Ando Anomaly of Optical Phonons in Bilayer Graphene , 2007 .

[5]  S. Reich,et al.  Phonon softening in individual metallic carbon nanotubes due to the Kohn Anomaly. , 2007, Physical review letters.

[6]  C. Hierold,et al.  Raman imaging of doping domains in graphene on SiO2 , 2007, 0709.4156.

[7]  S. Sarma,et al.  Measurement of scattering rate and minimum conductivity in graphene. , 2007, Physical review letters.

[8]  P. Kim,et al.  Raman scattering and tunable electron-phonon coupling in single layer graphene , 2007 .

[9]  V. Fal’ko,et al.  Electrons in bilayer graphene. , 2007 .

[10]  S. Sarma,et al.  A self-consistent theory for graphene transport , 2007, Proceedings of the National Academy of Sciences.

[11]  P. Kim,et al.  Infrared spectroscopy of Landau levels of graphene. , 2007, Physical review letters.

[12]  K. Novoselov,et al.  Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. , 2007, Nature materials.

[13]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[14]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[15]  P. Kim,et al.  Electric field effect tuning of electron-phonon coupling in graphene. , 2006, Physical review letters.

[16]  F. Guinea,et al.  Electron-phonon coupling and Raman spectroscopy in graphene , 2006, cond-mat/0608543.

[17]  M. Lazzeri,et al.  Nonadiabatic Kohn anomaly in a doped graphene monolayer. , 2006, Physical review letters.

[18]  T. Ando Anomaly of Optical Phonon in Monolayer Graphene , 2006 .

[19]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[20]  T. Ando,et al.  Optical Phonon Interacting with Electrons in Carbon Nanotubes(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2006 .

[21]  A. Geim,et al.  Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene , 2006, cond-mat/0602565.

[22]  V. Fal’ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2005, Physical review letters.

[23]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[24]  Tsuneya Ando,et al.  Phonons and Electron-Phonon Scattering in Carbon Nanotubes , 2002 .

[25]  P. Rennert,et al.  Many‐particle Physics , 1982 .

[26]  Meera Chandrasekhar,et al.  Effects of interband excitations on Raman phonons in heavily doped n − Si , 1978 .

[27]  M. Cardona,et al.  Effect of Carrier Concentration on the Raman Frequencies of Si and Ge , 1972 .

[28]  R. Stephenson A and V , 1962, The British journal of ophthalmology.