High-gain adaptive position control

High-gain adaptive position control is proposed for a stiff one-mass system (1MS) and an elastic two-mass system (2MS). The control objective is (load-side) position reference tracking and disturbance rejection (of load torques and friction). Position and speed are available for feedback. Two simple high-gain adaptive position control strategies are presented and applied to a laboratory setup: an adaptive λ-tracking controller and a funnel controller. Both controllers neither estimate nor identify the plant. The λ-tracking controller achieves tracking with prescribed asymptotic accuracy: for given λ > 0 (arbitrary small) the error approaches the interval [−λ, λ] asymptotically. Whereas the funnel controller assures tracking with prescribed transient accuracy: the error and its derivative are bounded by prescribed positive (possibly non-increasing) functions of time. A simple proportional-integral (PI)-like extension for the 1MS, and this extension in combination with a high-pass filter for the 2MS, allow for zero tracking errors in steady-state, respectively. Oscillations in the shaft of the 2MS can be suppressed.

[1]  Daniel Liberzon,et al.  The bang-bang funnel controller , 2010, 49th IEEE Conference on Decision and Control (CDC).

[2]  Ye Xudong,et al.  Universal λ-tracking for nonlinearly-perturbed systems without restrictions on the relative degree , 1999 .

[3]  E. P. Ryan,et al.  Controlled functional differential equations and adaptive stabilization , 2001 .

[4]  Jan Swevers,et al.  An integrated friction model structure with improved presliding behavior for accurate friction compensation , 1998, IEEE Trans. Autom. Control..

[5]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[6]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[7]  Mattias Nordin,et al.  Controlling mechanical systems with backlash - a survey , 2002, Autom..

[8]  Achim Ilchmann,et al.  Non-Identifier-Based High-Gain Adaptive Control , 1993 .

[9]  Markus Mueller,et al.  Funnel Control for Systems with Relative Degree Two , 2013, SIAM J. Control. Optim..

[10]  Achim Ilchmann,et al.  High‐gain control without identification: a survey , 2008 .

[11]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[12]  D. Bainov,et al.  Integral Inequalities and Applications , 1992 .

[13]  P. Dupont Avoiding stick-slip through PD control , 1994, IEEE Trans. Autom. Control..

[14]  W. R. Howard,et al.  Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness , 2005 .

[15]  Eugene P. Ryan,et al.  Systems of Controlled Functional Differential Equations and Adaptive Tracking , 2001, SIAM J. Control. Optim..

[16]  Dennis S. Bernstein,et al.  Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory , 2005 .

[17]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[18]  Paolo Rocco,et al.  Single and multistate integral friction models , 2004, IEEE Transactions on Automatic Control.

[19]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[20]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[21]  Daniel E. Miller,et al.  An adaptive controller which provides an arbitrarily good transient and steady-state response , 1991 .

[22]  Hans Schuster,et al.  PI-Funnel Control for Two Mass Systems , 2009, IEEE Transactions on Automatic Control.

[23]  Vincent Hayward,et al.  Single state elastoplastic friction models , 2002, IEEE Trans. Autom. Control..

[24]  U. Schafer,et al.  Influence and compensation of Coulomb friction in industrial pointing and tracking systems , 1991, Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting.

[25]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[26]  Dennis S. Bernstein,et al.  Direct Adaptive Dynamic Compensation for Minimum Phase Systems With Unknown Relative Degree , 2007, IEEE Transactions on Automatic Control.

[27]  Dierk Schröder,et al.  Elektrische Antriebe - Regelung von Antriebssystemen , 2001 .

[28]  Frank Allgöwer,et al.  Adaptive lambda-tracking for nonlinear higher relative degree systems , 2005, Autom..

[29]  Chris Sangwin,et al.  Tracking with prescribed transient behaviour , 2002 .

[30]  Eugene P. Ryan,et al.  Tracking with Prescribed Transient Behavior for Nonlinear Systems of Known Relative Degree , 2007, SIAM J. Control. Optim..

[31]  Eugene P. Ryan,et al.  Performance funnels and tracking control , 2009, Int. J. Control.

[32]  Hassan K. Khalil,et al.  Universal integral controllers for minimum-phase nonlinear systems , 2000, IEEE Trans. Autom. Control..