A Multiphysics Simulation Capability using the SIMULIA Co-Simulation Engine

A multiphysics simulation capability suitable for fluid-structure interaction is presented that uses the Abaqus nonlinear structural dynamics solver and the Loci/CHEM computational fluid dynamics solver. The coupling is achieved using SIMULIA’s Co-Simulation Engine technology. The Co-Simulation Engine is a software framework that allows the coupling of multiple simulation domains by coupling solvers in a synchronized manner.

[1]  Xiaoling Tong,et al.  Eulerian Simulations of Icing Collection Efficiency Using a Singularity Diffusion Model , 2005 .

[2]  Maynard C. Sandford,et al.  Steady pressure measurements on an Aeroelastic Research Wing (ARW-2) , 1994 .

[3]  Her Mann Tsai,et al.  Calculation of Wing Flutter by a Coupled Fluid-Structure Method , 2001 .

[4]  Edward A. Luke,et al.  On the use of general elements in fluid dynamics simulations , 2007 .

[5]  Gecheng Zha,et al.  Fully Coupled Fluid-Structural Interactions Using an Efficient High Solution Upwind Scheme , 2004 .

[6]  C. Farhat,et al.  Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .

[7]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[8]  Juan J. Alonso,et al.  Fully-implicit time-marching aeroelastic solutions , 1994 .

[9]  T. A. Byrdsong,et al.  Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing , 1990 .

[10]  Charbel Farhat,et al.  A three-dimensional torsional spring analogy method for unstructured dynamic meshes , 2002 .

[11]  Edward A. Luke,et al.  Coupling Heat Transfer and Fluid Flow Solvers for Multidisciplinary Simulations , 2005 .

[12]  James C. Newman,et al.  Computational Aeroelastic Analysis of an Unmanned Aerial Vehicle using U 2 NCLE , 2007 .

[13]  Jeroen A. S. Witteveen,et al.  Explicit Mesh Deformation Using Inverse Distance Weighting Interpolation , 2009 .

[14]  Maynard C. Sandford,et al.  Geometrical and structural properties of an Aeroelastic Research Wing (ARW-2) , 1989 .

[15]  David L. Marcum,et al.  Efficient Generation of High-Quality Unstructured Surface and Volume Grids , 2001, Engineering with Computers.

[16]  Robert M. Bennett,et al.  Time-marching transonic flutter solutions including angle-of-attack effects , 1983 .

[17]  D. Wilcox Formulation of the k-w Turbulence Model Revisited , 2008 .

[18]  Edward A. Luke,et al.  Numerical simulations of mixtures of fluids using upwind algorithms , 2007 .

[19]  E. Luke,et al.  Advanced Non-Gray Radiation Module in the Loci Framework for Combustion CFD , 2008 .

[20]  Eric Blades,et al.  A fast mesh deformation method using explicit interpolation , 2012, J. Comput. Phys..

[21]  D. Wilcox Turbulence modeling for CFD , 1993 .

[22]  H. Bijl,et al.  Mesh deformation based on radial basis function interpolation , 2007 .

[23]  Edward A. Luke,et al.  Loci: a rule-based framework for parallel multi-disciplinary simulation synthesis , 2005, J. Funct. Program..

[24]  Koji Isogai,et al.  On the Transonic-Dip Mechanism of Flutter of a Sweptback Wing , 1979 .

[25]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[26]  Edward A. Luke,et al.  On Robust and Accurate Arbitrary Polytope CFD Solvers , 2007 .

[27]  Gecheng Zha,et al.  Flutter Prediction Based on Fully Coupled Fluid-Structural Interactions , 2004 .