On products of k atoms

Abstract.Let H be an atomic monoid. For $k \in {\Bbb N}$ let ${\cal V}_k (H)$ denote the set of all $m \in {\Bbb N}$ with the following property: There exist atoms (irreducible elements) u1, …, uk, v1, …, vm ∈ H with u1· … · uk = v1 · … · vm. We show that for a large class of noetherian domains satisfying some natural finiteness conditions, the sets ${\cal V}_k (H)$ are almost arithmetical progressions. Suppose that H is a Krull monoid with finite cyclic class group G such that every class contains a prime (this includes the multiplicative monoids of rings of integers of algebraic number fields). We show that, for every $k \in {\Bbb N}$, max ${\cal V}_{2k+1} (H) = k \vert G\vert + 1$ which settles Problem 38 in [4].

[1]  Scott T. Chapman,et al.  Minimal zero-sequences and the strong Davenport constant , 1999, Discret. Math..

[2]  A. Geroldinger,et al.  Arithmetic of Mori domains and monoids , 2008 .

[3]  Scott T. Chapman,et al.  Generalized Sets of Lengths , 1998 .

[4]  Alfred Geroldinger,et al.  Monotone Chains of Factorizations in C-Monoids , 2005 .

[5]  Franz Halter-Koch,et al.  Ideal Systems: An Introduction to Multiplicative Ideal Theory , 1998 .

[6]  Alfred Geroldinger,et al.  Unions of sets of lengths , 2008 .

[7]  W. W. Smith,et al.  Factorization in dedekind domains with finite class group , 1990 .

[8]  W. D. Gao ZERO SUMS IN FINITE CYCLIC GROUPS , 2000 .

[9]  Fang Chen,et al.  Long zero-free sequences in finite cyclic groups , 2007, Discret. Math..

[10]  Alfred Geroldinger,et al.  Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .

[11]  Scott T. Chapman,et al.  A CHARACTERIZATION OF MINIMAL ZERO-SEQUENCES OF INDEX ONE IN FINITE CYCLIC GROUPS , 2005 .

[12]  S. Chapman,et al.  Non-Noetherian commutative ring theory , 2000 .

[13]  S. Chapman,et al.  Sets of lengths do not characterize numerical monoids. , 2007 .

[14]  P. A. Grillet Commutative Nilsemigroups with Zero Cohomology , 2001 .

[15]  Wolfgang Hassler,et al.  Local tameness of v-noetherian monoids , 2008 .

[16]  On the Lengths of Factorizations of Elements in an Algebraic Number Ring , 1993 .

[17]  Factorization problems in semigroups , 1990 .

[18]  Weidong Gao,et al.  Zero-sum problems in finite abelian groups: A survey , 2006 .

[19]  Scott T. Chapman,et al.  One Hundred Problems in Commutative Ring Theory , 2000 .

[20]  Alfred Geroldinger,et al.  Non-unique factorizations , 2006 .

[21]  Wolfgang A. Schmid A realization theorem for sets of lengths , 2009 .

[22]  Pingzhi Yuan On the index of minimal zero-sum sequences over finite cyclic groups , 2007, J. Comb. Theory, Ser. A.

[23]  S. Chapman Arithmetical properties of commutative rings and monoids , 2005 .