Non-relativistic anyons, exotic Galilean symmetry and noncommutative plane

We show that the Lukierski et al. model, invariant with respect to the two-fold centrally extended Galilei group, can be decomposed into an infinite number of independent copies (differing in their spin) of the ``exotic'' particle of Duval et al. The difference between the two models is found to be sensitive to electromagnetic coupling. The nature of the noncommutative plane coordinates is discussed in the light of the exotic galilean symmetry. We prove that the first model, interpreted as describing a non-relativistic anyon, is the non-relativistic limit of a particle with torsion related to relativistic anyons.

[1]  P. Horvathy The non-commutative Landau problem, and the Peierls substitution , 2002 .

[2]  R. Jackiw Physical instances of noncommuting coordinates , 2001, hep-th/0110057.

[3]  S. Bellucci,et al.  Two phases of the noncommutative quantum mechanics , 2001, hep-th/0106138.

[4]  M. Loewe,et al.  Noncommutative quantum mechanics: The Two-dimensional central field , 2001, hep-th/0106125.

[5]  C. Duval,et al.  Exotic Galilean symmetry in the non-commutative plane and the Hall effect , 2001, hep-th/0106089.

[6]  M. Douglas,et al.  Noncommutative field theory , 2001, hep-th/0106048.

[7]  V. Nair,et al.  Quantum mechanics on the noncommutative plane and sphere , 2000, hep-th/0011172.

[8]  L. Mezincescu Star Operation in Quantum Mechanics , 2000, hep-th/0007046.

[9]  R. Jackiw,et al.  Anyon spin and the exotic central extension of the planar Galilei group 1 This work is supported in , 2000, hep-th/0003130.

[10]  P. A. Horv'athy,et al.  The exotic Galilei group and the “Peierls substitution” , 2000, hep-th/0002233.

[11]  P. Horvathy,et al.  The "Peierls substitution" and the exotic Galilei group , 2000 .

[12]  L. Susskind,et al.  Magnetic fields, branes, and noncommutative geometry , 1999, hep-th/9908056.

[13]  L. Susskind,et al.  Magnetic fields, branes, and noncommutative geometry - art. no. 066004 , 2000 .

[14]  E. Witten,et al.  String theory and noncommutative geometry , 1999, hep-th/9908142.

[15]  C. Zachos,et al.  Features of time-independent Wigner functions , 1997, Physical Review D.

[16]  Alain Connes,et al.  Noncommutative Geometry and Matrix Theory: Compactification on Tori , 1997, hep-th/9711162.

[17]  J. Lukierski,et al.  Galilean-Invariant (2+1)-Dimensional Models with a Chern–Simons-Like Term andD=2 Noncommutative Geometry☆ , 1996, hep-th/9612017.

[18]  J. Cortés,et al.  Anyons as spinning particles , 1995, hep-th/9505117.

[19]  D. Grigore Transitive symplectic manifolds in 1+2 dimensions , 1996 .

[20]  P. Kosiński,et al.  Galilean invariance in (2+1)-dimensions , 1995, hep-th/9503046.

[21]  D. Grigore The Projective Unitary Irreducible Representations of the Galilei Group in 1+2 Dimensions , 1993, hep-th/9312048.

[22]  M. Plyushchay RELATIVISTIC PARTICLE WITH TORSION AND CHARGED PARTICLE IN A CONSTANT ELECTROMAGNETIC FIELD: IDENTITY OF EVOLUTION , 1993, hep-th/9309147.

[23]  Chih-Lung Chou,et al.  On the electromagnetic interactions of anyons , 1993, hep-th/9301037.

[24]  M. Plyushchay THE MODEL OF A FREE RELATIVISTIC PARTICLE WITH FRACTIONAL SPIN , 1992 .

[25]  Mariano A. del Olmo,et al.  Moyal quantization of 2+1‐dimensional Galilean systems , 1992 .

[26]  R. Jackiw,et al.  ``Peierls substitution'' and Chern-Simons Quantum mechanics , 1992, hep-th/9204057.

[27]  M. Plyushchay The model of the relativistic particle with torsion , 1991 .

[28]  M. Plyushchay Relativistic particle with torsion, Majorana equation and fractional spin , 1991 .

[29]  Nair,et al.  Relativistic wave equation for anyons. , 1991, Physical review. D, Particles and fields.

[30]  M. Plyushchay Relativistic model of the anyon , 1990 .

[31]  M. Plyushchay Massless Point Particle With Rigidity , 1989 .

[32]  A. Polyakov FERMI-BOSE TRANSMUTATIONS INDUCED BY GAUGE FIELDS , 1988 .

[33]  Eugene P. Wigner,et al.  Localized States for Elementary Systems , 1949 .