LARGE DEVIATIONS OF COMBINATORIAL DISTRIBUTIONS II. LOCAL LIMIT THEOREMS

We derive a general local limit theorem for probabilities of large deviations for a sequence of random variables by means of the saddlepoint method on Laplace-type integrals. This result is applicable to parameters in a number of combinatorial structures and the distribution of additive arithmetical functions. 1. Main result. This paper is a sequel to our paper [18] where we derived a general central limit theorem for probabilities of large deviations applicable to many classes of combinatorial structures and arithmetic functions. The ranges of large deviations treated here are usually referred to as "moderate deviations" in probability literature (cf., e.g., [23]); we follow the same terms as in Part I [18] to keep consistency. In this paper we consider corresponding local limit theorems. More precisely, given a sequence of integral random variables

[1]  D. Knuth,et al.  Mathematics for the Analysis of Algorithms , 1999 .

[2]  Philippe Flajolet,et al.  Gaussian limiting distributions for the number of components in combinatorial structures , 1990, J. Comb. Theory, Ser. A.

[3]  H. Teicher,et al.  Central Limit Theorems , 1997 .

[4]  Gérald Tenenbaum,et al.  Introduction à la théorie analytique et probabiliste des nombres , 1990 .

[5]  Hsien-Kuei Hwang,et al.  On Convergence Rates in the Central Limit Theorems for Combinatorial Structures , 1998, Eur. J. Comb..

[6]  Hsien-Kuei Hwang,et al.  Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques , 1994 .

[7]  On the Integers Having Exactly K Prime Factors , 1948 .

[8]  J. Kubilius,et al.  Probabilistic Methods in the Theory of Numbers , 1964 .

[9]  M. Ledoux Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi , 1992 .

[10]  Zhicheng Gao,et al.  Central and local limit theorems applied to asymptotic enumeration IV: multivariate generating functions , 1992 .

[11]  Philippe Flajolet,et al.  General combinatorial schemas: Gaussian limit distributions and exponential tails , 1993, Discret. Math..

[12]  Local Limit Theorems for Large Deviations , 1957 .

[13]  D. Kendall Random Variables and Probability Distributions (3Rd Ed.) , 1971 .

[14]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[15]  A. C. Aitken,et al.  Random variables and probability distributions , 1938 .

[16]  Atle Selberg Note on a Paper By L. G. Sathe , 1954 .

[17]  Michael Drmota,et al.  A Bivariate Asymptotic Expansion of Coefficients of Powers of Generating Functions , 1994, Eur. J. Comb..

[18]  A. Meir,et al.  The Asymptotic Behaviour of Coefficients of Powers of Certain Generating Functions , 1990, Eur. J. Comb..

[19]  E. Rodney Canfield,et al.  Central and Local Limit Theorems for the Coefficients of Polynomials of Binomial Type , 1977, J. Comb. Theory, Ser. A.

[20]  Jennie C. Hansen,et al.  Order Statistics for Decomposable Combinatorial Structures , 1994, Random Struct. Algorithms.

[21]  Simon Tavaré,et al.  Total Variation Asymptotics for Poisson Process Approximations of Logarithmic Combinatorial Assemblies , 1995 .

[22]  R. Otter The Number of Trees , 1948 .

[23]  K. K. Norton Estimates for partial sums of the exponential series , 1978 .

[24]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.

[25]  Local Limit Theorems for the Number of Components of Random Permutations and Mappings , 1989 .

[26]  Hsien-Kuei Hwang,et al.  Asymptotic expansions for the Stirling numbers of the first kind , 1995 .

[27]  Philippe Flajolet,et al.  Random Mapping Statistics , 1990, EUROCRYPT.

[28]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[30]  N. R. Chaganty,et al.  Large Deviation Local Limit Theorems for Arbitrary Sequences of Random Variables , 1985 .