An evolutionary approach to automatic synthesis of high-performance analog integrated circuits

This paper presents an analog integrated circuit synthesis system based on an evolutionary approach. The system contains several novel features. One of these is the high-performance optimization algorithm, which is a combination of evolutionary strategies and simulated annealing. Modeling of dc parameters is done via a fast dc simulator developed for this purpose whereas modeling of ac parameters can be done either with user-defined equations or with neural-fuzzy performance models trained from SPICE simulations. Another novel feature of the system is the incorporation of matching properties of devices. This way, the optimized circuit becomes tolerant to process variations. The synthesis system has been tested on several independent examples and synthesized circuits have been verified functionally with SPICE simulations. Finally, a prototype chip composed of the three examples has been manufactured. The measurement results have demonstrated the validity of the synthesis system on silicon.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  K. R. Lakshmikumar,et al.  Characterisation and modeling of mismatch in MOS transistors for precision analog design , 1986 .

[3]  Eric A. Vittoz,et al.  IDAC: an interactive design tool for analog CMOS circuits , 1987 .

[4]  Alberto L. Sangiovanni-Vincentelli,et al.  DELIGHT.SPICE: an optimization-based system for the design of integrated circuits , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[5]  Bing J. Sheu,et al.  A knowledge-based approach to analog IC design , 1988 .

[6]  Georges Gielen,et al.  Analog Circuit Design Optimization based on Symbolic Simulation and Simulated Annealing , 1989 .

[7]  Fathey M. El-Turky,et al.  BLADES: an artificial intelligence approach to analog circuit design , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[8]  Rob A. Rutenbar,et al.  OASYS: a framework for analog circuit synthesis , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[9]  M.J.M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[10]  P.R. Gray,et al.  OPASYN: a compiler for CMOS operational amplifiers , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  Andre Vladimirescu,et al.  The Spice Book , 1994 .

[12]  D. H. Horrocks,et al.  Genetically derived filter circuits using preferred value components , 1994 .

[13]  J. B. Grimbleby,et al.  Automatic analogue network synthesis using genetic algorithms , 1995 .

[14]  Bozena Kaminska,et al.  FPAD: a fuzzy nonlinear programming approach to analog circuit design , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  Domine Leenaerts,et al.  DARWIN: CMOS opamp Synthesis by Means of a Genetic Algorithm , 1995, 32nd Design Automation Conference.

[16]  Hassan Elwan,et al.  A novel CMOS current conveyor realization with an electronically tunable current mode filter suitable for VLSI , 1996 .

[17]  Leopoldo García Franquelo,et al.  Circuit performance modeling by means of fuzzy logic , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  Rob A. Rutenbar,et al.  Synthesis of high-performance analog circuits in ASTRX/OBLX , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Sina Balkir,et al.  ANNSyS (an analog neural network synthesis system) , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[20]  John R. Koza,et al.  Automated synthesis of analog electrical circuits by means of genetic programming , 1997, IEEE Trans. Evol. Comput..

[21]  Georges Gielen,et al.  Efficient statistical analog IC design using symbolic methods , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[22]  Jason D. Lohn,et al.  Automated Analog Circuit Sythesis Using a Linear Representation , 1998, ICES.

[23]  Marley M. B. R. Vellasco,et al.  Comparison of different evolutionary methodologies applied to electronic filter design , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[24]  M. A. Styblinski,et al.  Statistical behavioral modeling of integrated circuits , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[25]  MAELSTROM: efficient simulation-based synthesis for custom analog cells , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).

[26]  Marley M. B. R. Vellasco,et al.  A reconfigurable platform for the automatic synthesis of analog circuits , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[27]  Vu Duong,et al.  Evolution of analog circuits on field programmable transistor arrays , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[28]  G. Erten,et al.  Multi-level optimisation approach to switched capacitor filter synthesis , 2000 .

[29]  Hans-Georg Beyer,et al.  Theory of evolution strategies - a tutorial , 2001 .

[30]  Rob A. Rutenbar,et al.  DELIGHT.SPICE: An OptimizationBased System for the Design of Integrated Circuits , 2002 .

[31]  Günhan Dündar,et al.  A new approach to modeling statistical variations in MOS transistors , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).