A quantum computing implementation of nuclearelectronic orbital (NEO) theory: Toward an exact pre-Born-Oppenheimer formulation of molecular quantum systems.

Nuclear quantum phenomena beyond the Born-Oppenheimer approximation are known to play an important role in a growing number of chemical and biological processes. While there exists no unique consensus on a rigorous and efficient implementation of coupled electron-nuclear quantum dynamics, it is recognised that these problems scale exponentially with system size on classical processors and therefore may benefit from quantum computing implementations. Here, we introduce a methodology for the efficient quantum treatment of the electron-nuclear problem on near-term quantum computers, based upon the Nuclear-Electronic Orbital (NEO) approach. We generalize the electronic two-qubit tapering scheme to include nuclei by exploiting symmetries inherent in the NEO framework; thereby reducing the hamiltonian dimension, number of qubits, gates, and measurements needed for calculations. We also develop parameter transfer and initialisation techniques, which improve convergence behavior relative to conventional initialisation. These techniques are applied to H$_2$ and malonaldehyde for which results agree with Nuclear-Electronic Orbital Full Configuration Interaction and Nuclear-Electronic Orbital Complete Active Space Configuration Interaction benchmarks for ground state energy to within $10^{-6}$ Ha and entanglement entropy to within $10^{-4}$. These implementations therefore significantly reduce resource requirements for full quantum simulations of molecules on near-term quantum devices while maintaining high accuracy.

[1]  M. Pierini,et al.  Quantum anomaly detection in the latent space of proton collision events at the LHC , 2023, ArXiv.

[2]  M. Pierini,et al.  Unravelling physics beyond the standard model with classical and quantum anomaly detection , 2023, Mach. Learn. Sci. Technol..

[3]  I. Tavernelli,et al.  Quantum machine learning framework for virtual screening in drug discovery: a prospective quantum advantage , 2022, Mach. Learn. Sci. Technol..

[4]  M. Christandl,et al.  Quantum Computing for Molecular Biology ** , 2022, ChemBioChem.

[5]  Edward F. Valeev,et al.  Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry , 2022, Nature Communications.

[6]  K. Jansen,et al.  Strategies for the determination of the running coupling of ( 2+1 )-dimensional QED with quantum computing , 2022, Physical Review D.

[7]  N. W. Talarico,et al.  Quantum network medicine: rethinking medicine with network science and quantum algorithms , 2022, 2206.12405.

[8]  N. Marzari,et al.  Effective calculation of the Green's function in the time domain on near-term quantum processors , 2022, Physical Review Research.

[9]  S. Vallecorsa,et al.  Quantum neural networks force fields generation , 2022, Mach. Learn. Sci. Technol..

[10]  N. Marzari,et al.  One-particle Green's functions from the quantum equation of motion algorithm , 2022, Physical Review Research.

[11]  P. Barkoutsos,et al.  Simulating a ring-like Hubbard system with a quantum computer , 2021, Physical Review Research.

[12]  I. Tavernelli,et al.  Molecular Quantum Dynamics: A Quantum Computing Perspective. , 2021, Accounts of chemical research.

[13]  I. Tavernelli,et al.  Quantum algorithms for quantum dynamics: A performance study on the spin-boson model , 2021, Physical Review Research.

[14]  I. Tavernelli,et al.  Gauge-invariant quantum circuits for U (1) and Yang-Mills lattice gauge theories , 2021, Physical Review Research.

[15]  Fabijan Pavošević,et al.  Multicomponent Unitary Coupled Cluster and Equation-of-Motion for Quantum Computation. , 2021, Journal of chemical theory and computation.

[16]  Jennifer R. Glick,et al.  Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC , 2021, Physical Review Research.

[17]  P. Barkoutsos,et al.  Resource-efficient quantum algorithm for protein folding , 2021, npj Quantum Information.

[18]  P. Barkoutsos,et al.  Quantum HF/DFT-embedding algorithms for electronic structure calculations: Scaling up to complex molecular systems. , 2020, The Journal of chemical physics.

[19]  P. Barkoutsos,et al.  Quantum algorithm for alchemical optimization in material design† , 2020, Chemical science.

[20]  Patrick J. Coles,et al.  Noise-induced barren plateaus in variational quantum algorithms , 2020, Nature Communications.

[21]  R. Kern,et al.  scipy/scipy: SciPy 1.6.0 , 2020 .

[22]  P. Barkoutsos,et al.  Microcanonical and finite-temperature ab initio molecular dynamics simulations on quantum computers , 2020, 2008.08144.

[23]  Xiaobo Zhu,et al.  Superconducting quantum computing: a review , 2020, Science China Information Sciences.

[24]  I. Tavernelli,et al.  Nonadiabatic Molecular Quantum Dynamics with Quantum Computers. , 2020, Physical review letters.

[25]  I. Tavernelli,et al.  Toward scalable simulations of lattice gauge theories on quantum computers , 2020, 2005.10271.

[26]  Michael W. Schmidt,et al.  Recent developments in the general atomic and molecular electronic structure system. , 2020, The Journal of chemical physics.

[27]  Fabijan Pavošević,et al.  Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects via the Nuclear-Electronic Orbital Method. , 2020, Chemical reviews.

[28]  Kurt R. Brorsen Quantifying Multireference Character in Multicomponent Systems with Heat-Bath Configuration Interaction. , 2020, Journal of chemical theory and computation.

[29]  T. Martínez,et al.  Probing competing relaxation pathways in malonaldehyde with transient X-ray absorption spectroscopy† , 2020, Chemical science.

[30]  P. Barkoutsos,et al.  Quantum orbital-optimized unitary coupled cluster methods in the strongly correlated regime: Can quantum algorithms outperform their classical equivalents? , 2019, The Journal of chemical physics.

[31]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[32]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[33]  Chris Cade,et al.  Strategies for solving the Fermi-Hubbard model on near-term quantum computers , 2019, 1912.06007.

[34]  J. Gambetta,et al.  Quantum equation of motion for computing molecular excitation energies on a noisy quantum processor , 2019, Physical Review Research.

[35]  A. Roggero,et al.  Dynamic linear response quantum algorithm , 2018, Physical Review C.

[36]  Ivano Tavernelli,et al.  Resource-efficient quantum algorithm for protein folding , 2019, npj Quantum Information.

[37]  Andrea Muolo,et al.  H3 + as a five-body problem described with explicitly correlated Gaussian basis sets. , 2019, The Journal of chemical physics.

[38]  Alessandro Chiesa,et al.  Quantum Computers as Universal Quantum Simulators: State‐of‐the‐Art and Perspectives , 2019, Advanced Quantum Technologies.

[39]  Frank Pollmann,et al.  Simulating quantum many-body dynamics on a current digital quantum computer , 2019, npj Quantum Information.

[40]  Fabijan Pavošević,et al.  Molecular Vibrational Frequencies within the Nuclear-Electronic Orbital Framework. , 2019, The journal of physical chemistry letters.

[41]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[42]  A. Chiesa,et al.  Quantum hardware simulating four-dimensional inelastic neutron scattering , 2018, Nature Physics.

[43]  M. Levitt,et al.  On the importance of accounting for nuclear quantum effects in ab initio calibrated force fields in biological simulations , 2018, Proceedings of the National Academy of Sciences.

[44]  Ivano Tavernelli,et al.  Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions , 2018, Physical Review A.

[45]  H. Neven,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[46]  E. Solano,et al.  Quantum-classical computation of Schwinger model dynamics using quantum computers , 2018, Physical Review A.

[47]  Michele Ceriotti,et al.  Nuclear quantum effects enter the mainstream , 2018, 1803.01037.

[48]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[49]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[50]  H. Ogasawara,et al.  Temperature-Independent Nuclear Quantum Effects on the Structure of Water. , 2017, Physical Review Letters.

[51]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[52]  J. Gambetta,et al.  Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.

[53]  M. Ceriotti,et al.  Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol. , 2016, Physical review letters.

[54]  Xiao-Qing Jin,et al.  Conjugate Gradient Method , 2016 .

[55]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[56]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[57]  Matthew B. Hastings,et al.  Hybrid quantum-classical approach to correlated materials , 2015, 1510.03859.

[58]  D. Major,et al.  Nuclear quantum effects and kinetic isotope effects in enzyme reactions. , 2015, Archives of biochemistry and biophysics.

[59]  Hiromi Nakai,et al.  Quantum chemistry beyond Born-Oppenheimer approximation on a quantum computer: A simulated phase estimation study , 2015, 1507.03271.

[60]  M. Hastings,et al.  Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.

[61]  Katharina Boguslawski,et al.  Orbital entanglement in quantum chemistry , 2014, 1409.8017.

[62]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[63]  Charles R. Johnson,et al.  The relation between the diagonal entries and the eigenvalues of a symmetric matrix, based upon the sign pattern of its off-diagonal entries , 2013 .

[64]  M. Reiher,et al.  Elimination of the translational kinetic energy contamination in pre-Born–Oppenheimer calculations , 2012, 1212.3700.

[65]  M. Reiher,et al.  Entanglement Measures for Single- and Multireference Correlation Effects. , 2012, The journal of physical chemistry letters.

[66]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[67]  C P Herrero,et al.  Anomalous nuclear quantum effects in ice. , 2011, Physical review letters.

[68]  N. Scrutton,et al.  Nuclear Quantum Tunneling in the Light-activated Enzyme Protochlorophyllide Oxidoreductase* , 2009, Journal of Biological Chemistry.

[69]  Joel M Bowman,et al.  Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface. , 2008, The Journal of chemical physics.

[70]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[71]  F. Gebhard,et al.  Entanglement production by independent quantum channels , 2005, cond-mat/0512270.

[72]  S. Hyodo,et al.  Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory. , 2005, The Journal of chemical physics.

[73]  Simone Raugei,et al.  Nuclear quantum effects and hydrogen bonding in liquids. , 2003, Journal of the American Chemical Society.

[74]  T. Iordanov,et al.  Vibrational analysis for the nuclear–electronic orbital method , 2003 .

[75]  S. P. Webb,et al.  Multiconfigurational nuclear-electronic orbital approach: Incorporation of nuclear quantum effects in electronic structure calculations , 2002 .

[76]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[77]  H. Nakai Simultaneous determination of nuclear and electronic wave functions without Born–Oppenheimer approximation: Ab initio NO+MO/HF theory , 2002 .

[78]  H. Nakai,et al.  Non-Born–Oppenheimer theory for simultaneous determination of vibrational and electronic excited states: ab initio NO+MO/CIS theory , 2001 .

[79]  Y. Osamura,et al.  Isotope effect of hydrogen and lithium hydride molecules. Application of the dynamic extended molecular orbital method and energy component analysis , 2000 .

[80]  Masanori Tachikawa,et al.  Simultaneous optimization of GTF exponents and their centers with fully variational treatment of Hartree-Fock molecular orbital calculation , 1999 .

[81]  Dieter Kraft,et al.  Algorithm 733: TOMP–Fortran modules for optimal control calculations , 1994, TOMS.

[82]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[83]  A. C. Hurley The computation of floating functions and their use in force constant calculations , 1988 .

[84]  W. Rowe,et al.  Microwave spectroscopic study of malonaldehyde (3-hydroxy-2-propenal). 2. Structure, dipole moment, and tunneling , 1981 .

[85]  E. Fluder,et al.  INTRAMOLECULAR HYDROGEN TUNNELING IN MALONALDEHYDE , 1978 .

[86]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[87]  W. Kołos,et al.  Nonadiabatic Theory for Diatomic Molecules and Its Application to the Hydrogen Molecule , 1963 .

[88]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[89]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[90]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[91]  J. Lennard-jones,et al.  Molecular Spectra and Molecular Structure , 1929, Nature.