The aim of clustering is to partition data according to natural classes present in it. We proposed recently a method that makes no explicit assumption about the structure of the data and under very general and natural assumptions solves the clustering problem by evaluating thermal properties of a disordered (granular) magnet. The method was tested successfully on a variety of artificial and real-life problems; here we emphasize its application to analyze results obtained by a novel method of computer vision. The combination of these two techniques provides a powerful tool that succeeded to cluster properly 90 images of 6 objects on the basis of their pairwise dissimilarities. These dissimilarities, which constitute a highly non-metric set of pairwise distances between the images, form the input for clustering. A hierarchical organization of the images that agrees with human intuition, was obtained without assigning to the images coordinates in some abstract space.