SAR-retrieved wind in polar regions-comparison with in situ data and atmospheric model output

European remote sensing (ERS) satellites synthetic aperture radar (SAR) wind retrievals using CMOD-IFR2 are, for the first time, retrieved in the marginal ice zone (MIZ) and in Arctic coastal areas and compared with in situ observations from reseach vessels (RVs) and output from a high-resolution atmospheric model. The root mean squares (rms) of the comparisons were 1.6 m s/sup -1/ and 2 m s/sup -1/, respectively. The spatial variation of the SAR wind fields established a decrease in wind speed close to the ice edge for the late summer situations where the wind was along the ice edge with the ice to the left. This decrease is believed to be due to changes in atmospheric stability, possibly through development of an internal boundary layer caused by the cold ice cover and melt water. Lower wind speed near the ice edge is confirmed by the atmospheric model and the in situ observations. Furthermore, good results are obtained from SAR wind retrieval in leads when compared with model output during a cold-air outbreak. Routine measurements in the MIZ are useful for estimating the wind stress, and therefore SAR may play an important role in this region. Finally, the identification of a jet out from Hinlopen Strait in the Svalbard region and low wind wakes along the coast in the SAR-retrieved wind field is confirmed by in situ observations as the RV moves through the region. The jet is also confirmed by the atmospheric model, which is able to reproduce the situation.

[1]  O. Johannessen,et al.  Wind forced oceanic responses near ice edges revisited , 1998 .

[2]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[3]  Lars Petter Røed,et al.  A coupled ice‐ocean model of upwelling in the marginal ice zone , 1983 .

[4]  E. Carmack,et al.  Thermohaline circulation in the Arctic Mediterranean Seas , 1985 .

[5]  Pablo Clemente-Colon,et al.  Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  Jochen Horstmann,et al.  Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization , 2000, IEEE Trans. Geosci. Remote. Sens..

[7]  P. W. Vachon,et al.  Validation of wind vector retrieval from ERS-1 SAR images over the ocean , 1996 .

[8]  O. H. Shemdin,et al.  Norwegian remote sensing experiment in a marginal ice zone. , 1983, Science.

[9]  S. Häkkinen Coupled ice-ocean dynamics in the marginal ice zones Upwelling/downwelling and eddy generation , 1986 .

[10]  J. Johannessen,et al.  Eddy-Related Winter Convection in the Boreas Basin , 1991 .

[11]  P. Guest,et al.  The effect of observed ice conditions on the drag coefficient in the summer East Greenland Sea Marginal Ice Zone , 1987 .

[12]  E. Rasmussen,et al.  A most beautiful polar low. A case study of a polar low development in the Bear Island region , 1992 .

[13]  Werner Alpers,et al.  Katabatic wind fields in coastal areas studied by ERS-1 synthetic aperture radar imagery and numerical modeling , 1998 .

[14]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[15]  M. Ikeda Wind‐induced mesoscale features in a coupled ice‐ocean system , 1991 .

[16]  Kenneth L. Davidson,et al.  The aerodynamic roughness of different types of sea ice , 1991 .

[17]  Werner Alpers,et al.  Roll Convection within an Arctic Cold-Air Outbreak: Interpretation of In Situ Aircraft Measurements and Spaceborne SAR Imagery by a Three-Dimensional Atmospheric Model , 1999 .

[18]  O. M. Johannessen,et al.  Determination of wind energy from SAR images for siting windmill locations , 1998 .

[19]  B. Furevik,et al.  Case Study of a Coastal Jet at Spitsbergen—Comparison of SAR- and Model-Estimated Wind , 2002 .

[20]  R. M. Reynolds,et al.  A model of the atmospheric boundary layer over the marginal ice zone , 1983 .

[21]  Erik Korsbakken,et al.  Comparison of derived wind speed from synthetic aperture radar and scatterometer during the ERS tandem phase , 2000, IEEE Trans. Geosci. Remote. Sens..

[22]  Gary A. Maykut,et al.  Large‐scale heat exchange and ice production in the central Arctic , 1982 .

[23]  Florence Fetterer,et al.  Estimation of wind speed and wind direction from ERS-1 imagery , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[24]  Christopher C. Wackerman,et al.  Validating a scatterometer wind algorithm for ERS-1 SAR , 1998, IEEE Trans. Geosci. Remote. Sens..

[25]  Ola M. Johannessen,et al.  Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments , 1987 .

[26]  Leif G. Anderson,et al.  Deep waters of the Arctic Ocean : origin and circulation , 1995 .

[27]  Feifei Pan,et al.  Gap Winds and Wakes: SAR Observations and Numerical Simulations , 1999 .

[28]  Ola M. Johannessen,et al.  Oceanographic conditions in the marginal ice zone north of Svalbard in early fall 1979 with an emphasis on mesoscale processes , 1983 .

[29]  Roger Saunders,et al.  Near-Surface Satellite Wind Observations of Hurricanes and Their Impact on ECMWF Model Analyses and Forecasts , 1998 .

[30]  M. Ikeda A coupled ice‐ocean mixed layer model of the marginal ice zone responding to wind forcing , 1989 .

[31]  Robert A. Shuchman,et al.  Wind vector retrieval using ERS-1 synthetic aperture radar imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[32]  Harald Johnsen,et al.  SAR-ocean wave inversion using image cross spectra , 1995, IEEE Trans. Geosci. Remote. Sens..

[33]  Dudley B. Chelton,et al.  A geosat altimeter wind speed algorithm and a method for altimeter wind speed algorithm development , 1991 .

[34]  Werner Alpers,et al.  Tower‐based measurements of the ocean C band radar backscattering cross section , 1989 .

[35]  W. Pichel,et al.  Combined estimates improve high‐resolution coastal wind mapping , 2001 .

[36]  B. R. Furevik,et al.  Wind energy mapping using synthetic aperture radar , 2002 .

[37]  K. Katsaros,et al.  Observation of tropical cyclones by high-resolution scatterometry , 1998 .

[38]  C. Fairall,et al.  Mesoscale variations in surface stress, heat fluxes, and drag coefficient in the marginal ice zone during the 1983 Marginal Ice Zone Experiment , 1987 .

[39]  David L. T. Anderson,et al.  Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4 , 1997 .

[40]  Preparations for the assimilation of ERS-1 surface wind observations into numerical weather prediction models , 1995 .

[41]  O. M. Johannessen,et al.  Cover. Wind energy mapping of coastal zones by synthetic aperture radar (SAR) for siting potential windmill locations , 2000 .

[42]  P. Vachon,et al.  Analysis of ERS-1/2 synthetic aperture radar wave mode imagettes , 1998 .

[43]  J. Johannessen,et al.  Upwelling: Oceanic Structure at the Edge of the Arctic Ice Pack in Winter , 1979, Science.

[44]  D. A. Horn,et al.  MIZEX East 83/84 The summer marginal ice zone program in the Fram Strait/Greenland Sea , 1986 .

[45]  S. Lehner,et al.  Mesoscale wind measurements using recalibrated ERS SAR images , 1998 .

[46]  A. Timmermann,et al.  Northern hemispheric interdecadal variability : A coupled air-sea mode , 1998 .

[47]  P. W. Vachon,et al.  Wind field structure and speed from Radarsat SAR images , 1998 .

[48]  S. D. Smith,et al.  Wind stress and turbulence over ice in the Gulf of St. Lawrence , 1970 .

[49]  Fridtjof Nansen,et al.  The polar oceans and their role in shaping the global environment : the Nansen centennial volume , 1994 .

[50]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[51]  Ola M. Johannessen,et al.  Coastal wind field retrievals from ERS synthetic aperture radar images , 1998 .

[52]  J. Mailhot,et al.  A numerical case study of a polar low in the Labrador Sea , 1996 .

[53]  Peter Wadhams,et al.  Ice in the ocean , 2000 .