Organizing principles of pulvino-cortical functional coupling in humans

[1]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[2]  Jon H Kaas,et al.  The evolution and functions of nuclei of the visual pulvinar in primates , 2017, The Journal of comparative neurology.

[3]  Ryan E. B. Mruczek,et al.  A brief comparative review of primate posterior parietal cortex: A novel hypothesis on the human toolmaker , 2017, Neuropsychologia.

[4]  T. Ono,et al.  Population Coding of Facial Information in the Monkey Superior Colliculus and Pulvinar , 2016, Front. Neurosci..

[5]  M J Arcaro,et al.  Accessing Real-Life Episodic Information from Minutes versus Hours Earlier Modulates Hippocampal and High-Order Cortical Dynamics. , 2016, Cerebral cortex.

[6]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[7]  Doris Y. Tsao,et al.  Anatomical Connections of the Functionally Defined “Face Patches” in the Macaque Monkey , 2016, Neuron.

[8]  B. Biswal,et al.  Functional topography of the thalamocortical system in human , 2016, Brain Structure and Function.

[9]  M. Pinsk,et al.  The Anatomical and Functional Organization of the Human Visual Pulvinar , 2015, The Journal of Neuroscience.

[10]  Kevin DeSimone,et al.  Population Receptive Field Estimation Reveals New Retinotopic Maps in Human Subcortex , 2015, The Journal of Neuroscience.

[11]  C. Honey,et al.  Hierarchical process memory: memory as an integral component of information processing , 2015, Trends in Cognitive Sciences.

[12]  V. Casagrande,et al.  Retinotopic maps in the pulvinar of bush baby (otolemur garnettii) , 2013, The Journal of comparative neurology.

[13]  Alfonso Caramazza,et al.  Tool Selectivity in Left Occipitotemporal Cortex Develops without Vision , 2013, Journal of Cognitive Neuroscience.

[14]  Sabine Kastner,et al.  The representation of tool and non-tool object information in the human intraparietal sulcus. , 2013, Journal of neurophysiology.

[15]  G. Mangun,et al.  The role of the pulvinar in distractor processing and visual search , 2013, Human brain mapping.

[16]  Zoltán Toroczkai,et al.  The role of long-range connections on the specificity of the macaque interareal cortical network , 2013, Proceedings of the National Academy of Sciences.

[17]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[18]  Jumpei Matsumoto,et al.  Neuronal responses to face‐like stimuli in the monkey pulvinar , 2013, The European journal of neuroscience.

[19]  D. Heeger,et al.  Slow Cortical Dynamics and the Accumulation of Information over Long Timescales , 2012, Neuron.

[20]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[21]  Hang Joon Jo,et al.  Trouble at Rest: How Correlation Patterns and Group Differences Become Distorted After Global Signal Regression , 2012, Brain Connect..

[22]  Vivien A. Casagrande,et al.  Gating and control of primary visual cortex by pulvinar , 2012, Nature Neuroscience.

[23]  David Whitney,et al.  Attention gates visual coding in the human pulvinar , 2012, Nature Communications.

[24]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[25]  C. Honey,et al.  Topographic Mapping of a Hierarchy of Temporal Receptive Windows Using a Narrated Story , 2011, The Journal of Neuroscience.

[26]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[27]  S. Kastner,et al.  Mechanisms of Spatial Attention Control in Frontal and Parietal Cortex , 2010, The Journal of Neuroscience.

[28]  D. Leopold,et al.  Neural activity in the visual thalamus reflects perceptual suppression , 2009, Proceedings of the National Academy of Sciences.

[29]  M. Fox,et al.  The global signal and observed anticorrelated resting state brain networks. , 2009, Journal of neurophysiology.

[30]  Glyn W. Humphreys,et al.  Impaired attentional selection following lesions to human pulvinar: Evidence for homology between human and monkey , 2009, Proceedings of the National Academy of Sciences.

[31]  Mark W. Woolrich,et al.  Bayesian analysis of neuroimaging data in FSL , 2009, NeuroImage.

[32]  A. T. Smith,et al.  Dissociating vision and visual attention in the human pulvinar. , 2009, Journal of neurophysiology.

[33]  Kevin Murphy,et al.  The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? , 2009, NeuroImage.

[34]  M. Fox,et al.  Intrinsic functional relations between human cerebral cortex and thalamus. , 2008, Journal of neurophysiology.

[35]  Doris Y. Tsao,et al.  Patches with Links: A Unified System for Processing Faces in the Macaque Temporal Lobe , 2008, Science.

[36]  D. Heeger,et al.  A Hierarchy of Temporal Receptive Windows in Human Cortex , 2008, The Journal of Neuroscience.

[37]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[38]  M. Mallar Chakravarty,et al.  The Connectivity of the Human Pulvinar: A Diffusion Tensor Imaging Tractography Study , 2007, Int. J. Biomed. Imaging.

[39]  Jon H. Kaas,et al.  Pulvinar contributions to the dorsal and ventral streams of visual processing in primates , 2007, Brain Research Reviews.

[40]  Barbara L Finlay,et al.  Scaling of neuron number and volume of the pulvinar complex in new world primates: Comparisons with humans, other primates, and mammals , 2007, The Journal of comparative neurology.

[41]  Robert Ward,et al.  An object-based frame of reference within the human pulvinar. , 2007, Brain : a journal of neurology.

[42]  P. Cotton,et al.  Contralateral visual hemifield representations in the human pulvinar nucleus. , 2007, Journal of neurophysiology.

[43]  Bradford Z. Mahon,et al.  Action-Related Properties Shape Object Representations in the Ventral Stream , 2007, Neuron.

[44]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[45]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  R. Guillery,et al.  Exploring the Thalamus and Its Role in Cortical Function , 2005 .

[47]  Rebecca F. Schwarzlose,et al.  Separate Face and Body Selectivity on the Fusiform Gyrus , 2005, The Journal of Neuroscience.

[48]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[49]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[50]  S Shipp,et al.  The functional logic of cortico-pulvinar connections. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[51]  E. G. Jones,et al.  The thalamic matrix and thalamocortical synchrony , 2001, Trends in Neurosciences.

[52]  Alex Martin,et al.  Representation of Manipulable Man-Made Objects in the Dorsal Stream , 2000, NeuroImage.

[53]  Leslie G. Ungerleider,et al.  Visual cortical projections and chemoarchitecture of macaque monkey pulvinar , 2000, The Journal of comparative neurology.

[54]  B. Seltzer,et al.  Human thalamus: neurochemical mapping of inferior pulvinar complex. , 1999, Neuroreport.

[55]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[56]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[57]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[58]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[59]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Leslie G. Ungerleider,et al.  Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[61]  Leslie G. Ungerleider,et al.  Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys , 1993, Visual Neuroscience.

[62]  Malcolm P. Young,et al.  Objective analysis of the topological organization of the primate cortical visual system , 1992, Nature.

[63]  J. Lynch,et al.  The spatial distribution of pulvinar neurons that project to two subregions of the inferior parietal lobule in the macaque. , 1992, Cerebral cortex.

[64]  A. Morel,et al.  Segregated thalamocortical pathways to inferior parietal and inferotemporal cortex in macaque monkey , 1992, Visual Neuroscience.

[65]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[66]  D. Pandya,et al.  Anatomical investigation of projections from thalamus to posterior parietal cortex in the rhesus monkey: A WGA‐HRP and fluorescent tracer study , 1990, The Journal of comparative neurology.

[67]  D. LaBerge,et al.  Positron emission tomographic measurements of pulvinar activity during an attention task , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[69]  L. Benevento,et al.  An investigation of collateral projections of the dorsal lateral geniculate nucleus and other subcortical structures to cortical areas V1 and V4 in the macaque monkey: A double label retrograde tracer study , 1988, Experimental Brain Research.

[70]  S. Petersen,et al.  Contributions of the pulvinar to visual spatial attention , 1987, Neuropsychologia.

[71]  M. Posner,et al.  Deficits in human visual spatial attention following thalamic lesions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[72]  D. Pandya,et al.  Corticothalamic connections of the posterior parietal cortex in the rhesus monkey , 1985, The Journal of comparative neurology.

[73]  F Mauguiere,et al.  Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area, and the posterior parahippocampal gyrus in monkeys , 1985, The Journal of comparative neurology.

[74]  F. Crick Function of the thalamic reticular complex: the searchlight hypothesis. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[75]  D. B. Bender,et al.  Retinotopic organization of macaque pulvinar. , 1981, Journal of neurophysiology.

[76]  H. Barbas,et al.  Organization of afferent input to subdivisions of area 8 in the rhesus monkey , 1981, The Journal of comparative neurology.

[77]  J. Kaas,et al.  The inferior pulvinar complex in owl monkeys: Architectonic subdivisions and patterns of input from the superior colliculus and subdivisions of visual cortex , 1979, The Journal of comparative neurology.

[78]  R. Gattass,et al.  Visuotopic organization of the Cebus pulvinar: A double representation of the contralateral hemifield , 1978, Brain Research.

[79]  W Singer,et al.  Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. , 1977, Physiological reviews.

[80]  L. Benevento,et al.  The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (macaca mulatta): An autoradiographic study , 1976, Brain Research.

[81]  E. G. Jones,et al.  A projection from the medial pulvinar to the amygdala in primates , 1976, Brain Research.

[82]  J. Kaas,et al.  A representation of the visual field in the inferior nucleus of the pulvinar in the owl monkey (Aotus trivirgatus). , 1972, Brain research.

[83]  Christopher L. Asplund,et al.  The organization of the human cerebellum estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[84]  C. Koch,et al.  The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus , 2004, Experimental Brain Research.

[85]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[86]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[87]  Bob Filipczak Dog Day Afternoon. , 1997 .