Distinctive Spatial and Laminar Organization of Single Axons from Lateral Pulvinar in the Macaque

Pulvino-cortical (PC) projections are a major source of extrinsic input to early visual areas in the macaque. From bulk injections of anterograde tracers, these are known to terminate in layer 1 of V1 and densely in the middle cortical layers of extrastriate areas. Finer, single axon analysis, as reviewed here for projections from the lateral pulvinar (PL) in two macaque monkeys (n = 25 axons), demonstrates that PL axons have multiple arbors in V2 and V4, and that these are spatially separate and offset in different layers. In contrast, feedforward cortical axons, another major source of extrinsic input to extrastriate areas, are less spatially divergent and more typically terminate in layer 4. Functional implications are briefly discussed, including comparisons with the better investigated rodent brain.

[1]  A. Angelucci,et al.  Morphological Cell Types Projecting from V1 Layer 4B to V2 Thick and Thin Stripes , 2019, The Journal of Neuroscience.

[2]  Michael M. Halassa,et al.  Thalamocortical Circuit Motifs: A General Framework , 2019, Neuron.

[3]  K. Rockland Corticothalamic axon morphologies and network architecture , 2019, The European journal of neuroscience.

[4]  J. Lübke,et al.  Posterior thalamic nucleus axon terminals have different structure and functional impact in the motor and somatosensory vibrissal cortices , 2019, Brain Structure and Function.

[5]  R. Bruno,et al.  High-order thalamic inputs to primary somatosensory cortex are stronger and longer lasting than cortical inputs , 2019, eLife.

[6]  Mathieu Wolff,et al.  The Cognitive Thalamus as a Gateway to Mental Representations , 2018, The Journal of Neuroscience.

[7]  Kathleen S. Rockland,et al.  What do we know about laminar connectivity? , 2017, NeuroImage.

[8]  Alison L. Barth,et al.  POm Thalamocortical Input Drives Layer-Specific Microcircuits in Somatosensory Cortex , 2018, Cerebral cortex.

[9]  MD Ricardo Gattass,et al.  The Pulvinar Thalamic Nucleus of Non-Human Primates: Architectonic and Functional Subdivisions , 2018, Advances in Anatomy, Embryology and Cell Biology.

[10]  M. Bickford,et al.  The Mouse Pulvinar Nucleus Links the Lateral Extrastriate Cortex, Striatum, and Amygdala , 2018, The Journal of Neuroscience.

[11]  Sabine Kastner,et al.  Thalamic functions in distributed cognitive control , 2017, Nature Neuroscience.

[12]  K. Martin,et al.  Synaptic connections formed by patchy projections of pyramidal cells in the superficial layers of cat visual cortex , 2017, Brain Structure and Function.

[13]  S Murray Sherman,et al.  Thalamus plays a central role in ongoing cortical functioning , 2016, Nature Neuroscience.

[14]  H. Bridge,et al.  Adaptive Pulvinar Circuitry Supports Visual Cognition , 2016, Trends in Cognitive Sciences.

[15]  M. Bickford Thalamic Circuit Diversity: Modulation of the Driver/Modulator Framework , 2016, Front. Neural Circuits.

[16]  Robert Desimone,et al.  Pulvinar-Cortex Interactions in Vision and Attention , 2016, Neuron.

[17]  Johannes C. Dahmen,et al.  Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex , 2015, Nature Neuroscience.

[18]  F. Clascá,et al.  Anatomy and Development of Multispecific Thalamocortical Axons: Implications for Cortical Dynamics and Evolution , 2016 .

[19]  A. Kriegstein,et al.  A GABAergic projection from the zona incerta to cortex promotes cortical neuron development , 2015, Science.

[20]  Robert Desimone,et al.  Subcortical Projections of Area V2 in the Macaque , 2014, Journal of Cognitive Neuroscience.

[21]  Robert Desimone,et al.  Subcortical connections of area V4 in the macaque , 2000, The Journal of comparative neurology.

[22]  Gopathy Purushothaman,et al.  Morphological and neurochemical comparisons between pulvinar and V1 projections to V2 , 2013, The Journal of comparative neurology.

[23]  F. Clascá,et al.  Unveiling the diversity of thalamocortical neuron subtypes , 2012, The European journal of neuroscience.

[24]  Vivien A. Casagrande,et al.  Gating and control of primary visual cortex by pulvinar , 2012, Nature Neuroscience.

[25]  K. Rockland,et al.  Giant Neurons in the Macaque Pulvinar: A Distinct Relay Subpopulation , 2007, Frontiers in neuroanatomy.

[26]  D. Amaral,et al.  The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey , 2005, The Journal of comparative neurology.

[27]  R Gattass,et al.  Effects of inactivation of the lateral pulvinar on response properties of second visual area cells in Cebus monkeys , 2004, Clinical and experimental pharmacology & physiology.

[28]  J. B. Levitt,et al.  Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey , 2004, Experimental Brain Research.

[29]  S Shipp,et al.  The functional logic of cortico-pulvinar connections. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[30]  Kathleen S. Rockland,et al.  Non-uniformity of extrinsic connections and columnar organization , 2002, Journal of neurocytology.

[31]  K. Rockland,et al.  Single axon analysis of pulvinocortical connections to several visual areas in the Macaque , 1999, The Journal of comparative neurology.

[32]  E. G. Jones,et al.  Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex , 1995, The Journal of comparative neurology.

[33]  K. Rockland,et al.  Divergent feedback connections from areas V4 and TEO in the macaque , 1994, Visual Neuroscience.

[34]  K. Rockland,et al.  Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. , 1992, Cerebral cortex.

[35]  K. Rockland,et al.  Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey , 1990, Visual Neuroscience.

[36]  D. Whitteridge,et al.  Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[37]  K. Rockland,et al.  Bistratified distribution of terminal arbors of individual axons projecting from area V1 to middle temporal area (MT) in the macaque monkey , 1989, Visual Neuroscience.

[38]  H. Kennedy,et al.  A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  G Mann,et al.  ON THE THALAMUS * , 1905, British medical journal.