Sharp asymptotics of the first eigenvalue on some degenerating surfaces
暂无分享,去创建一个
[1] Albert Y. Zomaya,et al. Partial Differential Equations , 2007, Explorations in Numerical Analysis.
[2] Henrik Matthiesen,et al. Existence of metrics maximizing the first eigenvalue on non-orientable surfaces , 2019, Journal of Spectral Theory.
[3] Anna Siffert,et al. Handle attachment and the normalized first eigenvalue. , 2019, 1909.03105.
[4] S. Nayatani,et al. Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian , 2017, Comptes Rendus Mathematique.
[5] R. Petrides. Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces , 2013, 1310.4697.
[6] B. Colbois,et al. Extremal Eigenvalues of the Laplacian in a Conformal Class of Metrics: The `Conformal Spectrum' , 2003, math/0409316.
[7] O. Post. Periodic manifolds with spectral gaps , 2002, math-ph/0207017.
[8] O. Post. Periodic Manifolds, Spectral Gaps, and Eigenvalues in Gaps , 2000 .
[9] Michael Taylor,et al. Partial Differential Equations I: Basic Theory , 1996 .
[10] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[11] C. Anné. Fonctions propres sur des variétés avec des anses fines, application à la multiplicité , 1989 .
[12] C. Anné. Spectre du laplacien et écrasement d'anses , 1987 .
[13] Jeffrey Rauch,et al. Potential and scattering theory on wildly perturbed domains , 1975 .
[14] Nikolai Nadirashvili,et al. The Erwin Schrr Odinger International Institute for Mathematical Physics Berger's Isoperimetric Problem and Minimal Immersions of Surfaces Berger's Isoperimetric Problem and Minimal Immersions of Surfaces , 2022 .