High-resolution x-ray structure of human aquaporin 5

Human aquaporin 5 (HsAQP5) facilitates the transport of water across plasma membranes and has been identified within cells of the stomach, duodenum, pancreas, airways, lungs, salivary glands, sweat glands, eyes, lacrimal glands, and the inner ear. AQP5, like AQP2, is subject to posttranslational regulation by phosphorylation, at which point it is trafficked between intracellular storage compartments and the plasma membrane. Details concerning the molecular mechanism of membrane trafficking are unknown. Here we report the x-ray structure of HsAQP5 to 2.0-Å resolution and highlight structural similarities and differences relative to other eukaryotic aquaporins. A lipid occludes the putative central pore, preventing the passage of gas or ions through the center of the tetramer. Multiple consensus phosphorylation sites are observed in the structure and their potential regulatory role is discussed. We postulate that a change in the conformation of the C terminus may arise from the phosphorylation of AQP5 and thereby signal trafficking.

[1]  J. Califano,et al.  Overexpression of AQP5, a putative oncogene, promotes cell growth and transformation. , 2008, Cancer letters.

[2]  Hjalmar Brismar,et al.  Identification of a molecular target for glutamate regulation of astrocyte water permeability , 2008, Glia.

[3]  J. Califano,et al.  Membrane trafficking of AQP5 and cAMP dependent phosphorylation in bronchial epithelium. , 2008, Biochemical and biophysical research communications.

[4]  Carissa M Krane,et al.  Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans , 2007, Mammalian Genome.

[5]  E. Tajkhorshid,et al.  Molecular mechanisms of conduction and selectivity in aquaporin water channels. , 2007, The Journal of nutrition.

[6]  Robert M Stroud,et al.  Structural basis of aquaporin inhibition by mercury. , 2007, Journal of molecular biology.

[7]  Klaus Schulten,et al.  Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. , 2007, Journal of structural biology.

[8]  Klaus Schulten,et al.  Mechanism of gating and ion conductivity of a possible tetrameric pore in aquaporin-1. , 2006, Structure.

[9]  Bert L de Groot,et al.  Does CO2 permeate through aquaporin-1? , 2006, Biophysical journal.

[10]  C. Yao,et al.  Protein kinase A-regulated membrane trafficking of a green fluorescent protein-aquaporin 5 chimera in MDCK cells. , 2006, Biochimica et biophysica acta.

[11]  Yi Wang,et al.  Structural mechanism of plant aquaporin gating , 2006, Nature.

[12]  Kazushi Kimura,et al.  Implications of the aquaporin-4 structure on array formation and cell adhesion. , 2006, Journal of molecular biology.

[13]  D. Fu,et al.  Crystal Structure of AqpZ Tetramer Reveals Two Distinct Arg-189 Conformations Associated with Water Permeation through the Narrowest Constriction of the Water-conducting Channel* , 2006, Journal of Biological Chemistry.

[14]  Peter Agre,et al.  Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 A. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[16]  M. Yasui,et al.  Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3 mAChRs in interlobular ducts of rat parotid gland. , 2005, American journal of physiology. Cell physiology.

[17]  B. Baum,et al.  Modifying the NH2 and COOH termini of aquaporin-5: effects on localization in polarized epithelial cells. , 2005, Tissue engineering.

[18]  P. Deen,et al.  Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus. , 2005, Journal of the American Society of Nephrology : JASN.

[19]  Andreas Engel,et al.  The 5 angstrom structure of heterologously expressed plant aquaporin SoPIP2;1 , 2005 .

[20]  Henning Stahlberg,et al.  The 4.5 A structure of human AQP2. , 2005, Journal of molecular biology.

[21]  Helmut Grubmüller,et al.  The dynamics and energetics of water permeation and proton exclusion in aquaporins. , 2005, Current opinion in structural biology.

[22]  Robert M Stroud,et al.  The channel architecture of aquaporin 0 at a 2.2-A resolution. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Peter Agre,et al.  From structure to disease: the evolving tale of aquaporin biology , 2004, Nature Reviews Molecular Cell Biology.

[24]  Tamir Gonen,et al.  Aquaporin-0 membrane junctions reveal the structure of a closed water pore , 2004, Nature.

[25]  Robert M Stroud,et al.  Architecture and Selectivity in Aquaporins: 2.5 Å X-Ray Structure of Aquaporin Z , 2003, PLoS biology.

[26]  J. Hajdu,et al.  MIR phasing using merohedrally twinned crystals. , 2003, Acta crystallographica. Section D, Biological crystallography.

[27]  C. Lovisolo,et al.  The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions , 2003, Nature.

[28]  J. Kawedia,et al.  Cyclic AMP Regulates Aquaporin 5 Expression at Both Transcriptional and Post-transcriptional Levels through a Protein Kinase A Pathway* , 2003, Journal of Biological Chemistry.

[29]  Manuel C. Peitsch,et al.  SWISS-MODEL: an automated protein homology-modeling server , 2003, Nucleic Acids Res..

[30]  D. Fotiadis,et al.  Reconstitution of water channel function of an aquaporin overexpressed and purified from Pichia pastoris , 2003, FEBS letters.

[31]  W. Tanner,et al.  Specific lipid requirements of membrane proteins--a putative bottleneck in heterologous expression. , 2003, Biochimica et biophysica acta.

[32]  A. Verkman,et al.  Evidence against aquaporin‐1‐dependent CO2 permeability in lung and kidney , 2002, The Journal of physiology.

[33]  K. Schulten,et al.  Control of the Selectivity of the Aquaporin Water Channel Family by Global Orientational Tuning , 2002, Science.

[34]  Bong-Gyoon Han,et al.  Structural basis of water-specific transport through the AQP1 water channel , 2001, Nature.

[35]  B. L. de Groot,et al.  A refined structure of human aquaporin‐1 , 2001, FEBS letters.

[36]  N. LaRusso,et al.  The Water Channel Aquaporin-8 Is Mainly Intracellular in Rat Hepatocytes, and Its Plasma Membrane Insertion Is Stimulated by Cyclic AMP* , 2001, The Journal of Biological Chemistry.

[37]  K. Tsubota,et al.  Defective cellular trafficking of lacrimal gland aquaporin-5 in Sjögren's syndrome , 2001, The Lancet.

[38]  A Cheng,et al.  Visualization of a water-selective pore by electron crystallography in vitreous ice. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Fotiadis,et al.  Structural Characterization of Two Aquaporins Isolated from Native Spinach Leaf Plasma Membranes* , 2001, The Journal of Biological Chemistry.

[40]  D. Fu,et al.  Structure of a glycerol-conducting channel and the basis for its selectivity. , 2000, Science.

[41]  Andreas Engel,et al.  Structural determinants of water permeation through aquaporin-1 , 2000, Nature.

[42]  R. Patil,et al.  Protein kinase A-dependent phosphorylation of aquaporin-1. , 2000, Biochemical and biophysical research communications.

[43]  J. Regan,et al.  Cloned human aquaporin-1 is a cyclic GMP-gated ion channel. , 2000, Molecular pharmacology.

[44]  C Combet,et al.  NPS@: network protein sequence analysis. , 2000, Trends in biochemical sciences.

[45]  M. Zeidel,et al.  Reconstituted Aquaporin 1 Water Channels Transport CO2 across Membranes* , 1998, The Journal of Biological Chemistry.

[46]  M. Mclaughlin,et al.  Vasopressin regulated trafficking of a green fluorescent protein-aquaporin 2 chimera in LLC-PK1 cells , 1998, Histochemistry and Cell Biology.

[47]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[48]  F. Marumo,et al.  Phosphorylation of Serine 256 Is Required for cAMP-dependent Regulatory Exocytosis of the Aquaporin-2 Water Channel* , 1997, The Journal of Biological Chemistry.

[49]  D. Hary,et al.  Replay of Hippocampal "Memories" , 1996, Science.

[50]  J. Regan,et al.  Forskolin Stimulation of Water and Cation Permeability in Aquaporin1 Water Channels , 1996, Science.

[51]  C. Larsson,et al.  The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. , 1996, The Plant cell.

[52]  G J Kleywegt,et al.  xdlMAPMAN and xdlDATAMAN - programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. , 1996, Acta crystallographica. Section D, Biological crystallography.

[53]  G. Kleywegt Use of non-crystallographic symmetry in protein structure refinement. , 1996, Acta crystallographica. Section D, Biological crystallography.

[54]  P. Agre,et al.  Molecular Cloning and Characterization of an Aquaporin cDNA from Salivary, Lacrimal, and Respiratory Tissues (*) , 1995, The Journal of Biological Chemistry.

[55]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[56]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[57]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[58]  B. Wallace,et al.  The pore dimensions of gramicidin A. , 1993, Biophysical journal.

[59]  Peter Agre,et al.  Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell CHIP28 Protein , 1992, Science.

[60]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[61]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[62]  P J Artymiuk,et al.  Refinement of human lysozyme at 1.5 A resolution analysis of non-bonded and hydrogen-bond interactions. , 1981, Journal of molecular biology.

[63]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[64]  Richard Neutze,et al.  Aquaporin gating. , 2006, Current opinion in structural biology.

[65]  B. L. de Groot,et al.  The 5A structure of heterologously expressed plant aquaporin SoPIP2;1. , 2005, Journal of molecular biology.

[66]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[67]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[68]  A. Bairoch,et al.  The PROSITE database, its status in 1997 , 1997, Nucleic Acids Res..