Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon.

Direct integration of high-performance laser diodes on silicon will dramatically transform the world of photonics, expediting the progress toward low-cost and compact photonic integrated circuits (PICs) on the mainstream silicon platform. Here, we report, to the best of our knowledge, the first 1.3 μm room-temperature continuous-wave InAs quantum-dot micro-disk lasers epitaxially grown on industrial-compatible Si (001) substrates without offcut. The lasing threshold is as low as hundreds of microwatts, similar to the thresholds of identical lasers grown on a GaAs substrate. The heteroepitaxial structure employed here does not require the use of an absorptive germanium buffer and/or dislocation filter layers, both of which impede the efficient coupling of light from the laser active regions to silicon waveguides. This allows for full compatibility with the extensive silicon-on-insulator (SOI) technology. The large-area virtual GaAs (on Si) substrates can be directly adopted in various mature in-plane laser configurations, both optically and electrically. Thus, this demonstration represents a major advancement toward the commercial success of fully integrated silicon photonics.

[1]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[2]  John E. Bowers,et al.  Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Zhiping Zhou,et al.  On-chip light sources for silicon photonics , 2015, Light: Science & Applications.

[4]  Di Liang,et al.  Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. , 2009, Optics express.

[5]  John E. Bowers,et al.  MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon , 2014 .

[6]  Zach DeVito,et al.  Opt , 2017 .

[7]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[8]  Kei May Lau,et al.  InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band , 2015 .

[9]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[10]  Rachel Won,et al.  Integrating silicon photonics , 2010 .

[11]  F. Xia,et al.  Ultracompact optical buffers on a silicon chip , 2007 .

[12]  Mitsuru Sugawara,et al.  Quantum dot devices: Handling the heat , 2009 .

[13]  C. Merckling,et al.  An InGaAs/InP quantum well finfet using the replacement fin process integrated in an RMG flow on 300mm Si substrates , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[14]  John E. Bowers,et al.  A path to 300 mm hybrid silicon photonic integrated circuits , 2014, OFC 2014.

[15]  Chao Li,et al.  Review of Silicon Photonics Foundry Efforts , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Jishi Cui,et al.  High-performance Ge-on-Si photodetector with optimized DBR location. , 2017, Optics letters.

[17]  M. Maksimov,et al.  Device characteristics of long-wavelength lasers based on self-organized quantum dots , 2012 .

[18]  Alwyn J. Seeds,et al.  1.3-μm InAs/GaAs quantum-dot laser monolithically grown on Si Substrates operating over 100°C , 2014 .

[19]  Emmanuel Augendre,et al.  Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band , 2010 .

[20]  Alwyn Seeds,et al.  Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.

[21]  John E. Bowers,et al.  Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers , 2015 .

[22]  John E. Bowers,et al.  Quantum dot lasers for silicon photonics [Invited] , 2015 .

[23]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[24]  Zetian Mi,et al.  High-Performance $\hbox{In}_{0.5}\hbox{Ga}_{0.5} \hbox{As/GaAs}$ Quantum-Dot Lasers on Silicon With Multiple-Layer Quantum-Dot Dislocation Filters , 2007, IEEE Transactions on Electron Devices.

[25]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[26]  Bin Tian,et al.  Room-temperature InP distributed feedback laser array directly grown on silicon , 2015 .

[27]  Alexey E. Zhukov,et al.  Room Temperature Lasing in 1-μm Microdisk Quantum Dot Lasers , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Igor Aharonovich,et al.  Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities , 2014, Proceedings of the National Academy of Sciences.

[29]  M. S. Moreolo,et al.  Optical Fiber Communication Conference , 2014 .

[30]  Yasuhiko Arakawa,et al.  Quantum dot lasers for silicon photonics , 2016, 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS).

[31]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[32]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[33]  Kei May Lau,et al.  Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon , 2015 .

[34]  Shuji Nakamura,et al.  Room-temperature continuous-wave lasing in GaN/InGaN microdisks , 2007 .

[35]  K. Vahala Optical microcavities , 2003, Nature.