A coalgebraic take on regular and $\omega$-regular behaviours

We present a general coalgebraic setting in which we define finite and infinite behaviour with Buchi acceptance condition for systems whose type is a monad. The first part of the paper is devoted to presenting a construction of a monad suitable for modelling (in)finite behaviour. The second part of the paper focuses on presenting the concepts of a (coalgebraic) automaton and its ($\omega$-) behaviour. We end the paper with coalgebraic Kleene-type theorems for ($\omega$-) regular input. The framework is instantiated on non-deterministic (Buchi) automata, tree automata and probabilistic automata.

[1]  Marco Peressotti,et al.  Behavioural equivalences for timed systems , 2017, Log. Methods Comput. Sci..

[2]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[3]  Yde Venema,et al.  Automata for Coalgebras: An Approach Using Predicate Liftings , 2010, ICALP.

[4]  Corina Cîrstea,et al.  EXPTIME Tableaux for the Coalgebraic mu-Calculus , 2011, Log. Methods Comput. Sci..

[5]  Philip Wadler,et al.  Combining Monads , 1992 .

[6]  Jirí Adámek,et al.  What Are Iteration Theories? , 2007, MFCS.

[7]  A. Kock Strong functors and monoidal monads , 1972 .

[8]  Christel Baier,et al.  Recognizing /spl omega/-regular languages with probabilistic automata , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[9]  Tomasz Brengos,et al.  Weak bisimulation for coalgebras over order enriched monads , 2013, Log. Methods Comput. Sci..

[10]  Alexandra Silva,et al.  Killing epsilons with a dagger: A coalgebraic study of systems with algebraic label structure , 2015, Theor. Comput. Sci..

[11]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[12]  Ichiro Hasuo,et al.  Coalgebraic Trace Semantics for Buechi and Parity Automata , 2016, CONCUR.

[13]  Marco Peressotti,et al.  A Uniform Framework for Timed Automata , 2016, CONCUR.

[14]  Zoltán Ésik,et al.  Completeness of Park Induction , 1997, Theor. Comput. Sci..

[15]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[17]  Erik P. de Vink,et al.  Coalgebraic Weak Bisimulation for Action-Type Systems , 2009, Sci. Ann. Comput. Sci..

[18]  H. Gumm Elements Of The General Theory Of Coalgebras , 1999 .

[19]  Tomasz Brengos A Coalgebraic Take on Regular and omega-Regular Behaviour for Systems with Internal Moves , 2018, CONCUR.

[20]  Ichiro Hasuo,et al.  Generic Forward and Backward Simulations , 2006, CONCUR.

[21]  David I. Spivak,et al.  Seven Sketches in Compositionality: An Invitation to Applied Category Theory , 2018, 1803.05316.

[22]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[23]  Bart Jacobs Trace Semantics for Coalgebras , 2004, CMCS.

[24]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[25]  Marino Miculan,et al.  Behavioural equivalences for coalgebras with unobservable moves , 2014, J. Log. Algebraic Methods Program..

[26]  Christel Baier,et al.  Weak Bisimulation for Fully Probabilistic Processes , 1997, FBT.

[27]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[28]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[29]  Vincenzo Ciancia,et al.  Stream Automata Are Coalgebras , 2012, CMCS.

[30]  Tomasz Brengos On Coalgebras with Internal Moves , 2014, CMCS.

[31]  D. Sangiorgi Introduction to Bisimulation and Coinduction , 2011 .

[32]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[33]  Ichiro Hasuo,et al.  Coalgebraic Infinite Traces and Kleisli Simulations , 2018, Log. Methods Comput. Sci..

[34]  Zoltán Ésik,et al.  A Unifying Kleene Theorem for Weighted Finite Automata , 2011, Rainbow of Computer Science.

[35]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[36]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[37]  Anil Nerode,et al.  Automata theory and its applications , 2001 .

[38]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[39]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[40]  Ana Sokolova,et al.  Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..

[41]  Dirk Pattinson,et al.  Coalgebraic Weak Bisimulation from Recursive Equations over Monads , 2014, ICALP.

[42]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[43]  Thomas Wilke,et al.  Automata logics, and infinite games: a guide to current research , 2002 .

[44]  Gordon D. Plotkin,et al.  Complete axioms for categorical fixed-point operators , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[45]  John Power,et al.  The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads , 2007, Computation, Meaning, and Logic.

[46]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[47]  Zoltán Ésik,et al.  Iteration Grove Theories with Applications , 2009, CAI.

[48]  Corina Cîrstea,et al.  Generic Infinite Traces and Path-Based Coalgebraic Temporal Logics , 2010, CMCS@ETAPS.

[49]  Philip S. Mulry,et al.  Lifting Theorems for Kleisli Categories , 1993, MFPS.

[50]  Ana Sokolova,et al.  Probabilistic systems coalgebraically: A survey , 2011, Theor. Comput. Sci..

[51]  Alexandra Silva,et al.  Trace semantics via determinization , 2012, J. Comput. Syst. Sci..

[52]  Law Fw FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .

[53]  Christel Baier,et al.  Deciding Bisimilarity and Similarity for Probabilistic Processes , 2000, J. Comput. Syst. Sci..

[54]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[55]  Jirí Adámek,et al.  Corecursive Algebras, Corecursive Monads and Bloom Monads , 2014, Log. Methods Comput. Sci..