A discriminant analysis using composite features for classification problems

In this paper, we propose a new discriminant analysis using composite features for pattern classification. A composite feature consists of a number of primitive features, each of which corresponds to an input variable. The covariance of composite features is obtained from the inner product of composite features and can be considered as a generalized form of the covariance of primitive features. It contains information on statistical dependency among multiple primitive features. A discriminant analysis (C-LDA) using the covariance of composite features is a generalization of the linear discriminant analysis (LDA). Unlike LDA, the number of extracted features can be larger than the number of classes in C-LDA, which is a desirable property especially for binary classification problems. Experimental results on several data sets indicate that C-LDA provides better classification results than other methods based on primitive features.

[1]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[2]  Bor-Chen Kuo,et al.  Nonparametric weighted feature extraction for classification , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Chong-Ho Choi,et al.  Pattern Classification Using Composite Features , 2006, ICANN.

[4]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[5]  Chong-Ho Choi,et al.  Input Feature Selection by Mutual Information Based on Parzen Window , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Chong-Ho Choi,et al.  Image covariance-based subspace method for face recognition , 2007, Pattern Recognit..

[7]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[8]  Jian Yang,et al.  From image vector to matrix: a straightforward image projection technique - IMPCA vs. PCA , 2002, Pattern Recognit..

[9]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[10]  Jonny Eriksson,et al.  Feature reduction for classification of multidimensional data , 2000, Pattern Recognit..

[11]  Robert P. W. Duin,et al.  Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[13]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[14]  Cor J. Veenman,et al.  The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Chong-Ho Choi,et al.  Combined subspace method using global and local features for face recognition , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[16]  Tao Xiong,et al.  A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[17]  K. Fukunaga,et al.  Nonparametric Discriminant Analysis , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Hakan Cevikalp,et al.  Discriminative common vectors for face recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Chengjun Liu,et al.  Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition , 2002, IEEE Trans. Image Process..

[20]  Chong-Ho Choi,et al.  Input feature selection for classification problems , 2002, IEEE Trans. Neural Networks.

[21]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[22]  Daoqiang Zhang,et al.  Feature extraction approaches based on matrix pattern: MatPCA and MatFLDA , 2005, Pattern Recognit. Lett..

[23]  Robert P. W. Duin,et al.  Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Terrence J. Sejnowski,et al.  Analysis of hidden units in a layered network trained to classify sonar targets , 1988, Neural Networks.

[25]  Kar-Ann Toh,et al.  Benchmarking a reduced multivariate polynomial pattern classifier , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[28]  Xiaogang Wang,et al.  A unified framework for subspace face recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Tony R. Martinez,et al.  Reduction Techniques for Instance-Based Learning Algorithms , 2000, Machine Learning.

[30]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[31]  C. H. Chen,et al.  On information and distance measures, error bounds, and feature selection , 1976, Information Sciences.

[32]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[33]  Keinosuke Fukunaga,et al.  Bayes Error Estimation Using Parzen and k-NN Procedures , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  M. Omair Ahmad,et al.  Optimizing the kernel in the empirical feature space , 2005, IEEE Transactions on Neural Networks.

[35]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[36]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Jian Yang,et al.  Two-dimensional discriminant transform for face recognition , 2005, Pattern Recognit..

[38]  Konstantinos N. Plataniotis,et al.  Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition , 2005, Pattern Recognit. Lett..