Networks, multipoles and multiports

Starting point is the definition of networks as ordered pairs of a skeleton and a constitutive relation. The skeleton describes the topological structure of a network. The constitutive relation describes the physical properties assigned to its branch set. The behavior of a network is defined as the set of all signal pairs obeying its constitutive relation and both Kirchhoff's laws. Multipoles are introduced as ordered pairs consisting of a network and a family of terminal classes. The terminal classes are disjoint subsets of the node set of the corresponding network. Multiports are defined as multipoles whose terminal classes contain exactly two nodes. Based on these concepts a general theory of the terminal behavior of multipoles is developed.

[1]  Alan S. Perelson,et al.  Bond graphs and linear graphs , 1976 .

[2]  M. Milic,et al.  General passive networks-Solvability, degeneracies, and order of complexity , 1974 .

[3]  A. Reibiger Über das Klemmenverhalten von Netzwerken , 1986 .

[4]  Sundaram Seshu,et al.  Linear network analysis , 1959 .

[5]  Roy M. Howard,et al.  Linear System Theory , 1992 .

[6]  M. N. S. Swamy,et al.  Graphs: Theory and Algorithms: Thulasiraman/Graphs , 1992 .

[7]  M.L. Liou,et al.  Computer-aided analysis of electronic circuits: Algorithms and computational techniques , 1977, Proceedings of the IEEE.

[8]  General dynamical processes : a mathematical introduction , 1971 .

[9]  Leon O. Chua,et al.  Diakoptic and generalized hybrid analysis , 1976 .

[10]  Gordon W. Roberts,et al.  The current conveyor: history, progress and new results , 1990 .

[11]  Leon O. Chua,et al.  Graph-theoretic properties of dynamic nonlinear networks , 1976 .

[12]  P. Cameron Naïve set theory , 1998 .

[13]  Alan S. Perelson,et al.  System Dynamics: A Unified Approach , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  C. Desoer,et al.  Linear System Theory , 1963 .

[15]  R. V. Randow Introduction to the Theory of Matroids , 1975 .

[16]  H. J. Carlin,et al.  Network Synthesis with Negative Resistors , 1961, Proceedings of the IRE.

[18]  J. Willems The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.

[19]  V. Belevitch,et al.  Classical network theory , 1968 .

[20]  Václav Doležal,et al.  Dynamics of linear systems , 1964 .

[21]  Don H. Johnson Origins of the equivalent circuit concept: the voltage-source equivalent , 2003, Proc. IEEE.

[22]  H. Carlin,et al.  Singular Network Elements , 1964 .

[23]  Leon O. Chua,et al.  Nonlinear circuit theory , 1978 .

[24]  Matthias Passlack,et al.  Analysis of propagation delays in high-speed VLSI circuits using a distributed line model , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[25]  Charles A. Desoer,et al.  Basic Circuit Theory , 1969 .

[26]  H. Narayanan Submodular functions and electrical networks , 1997 .

[27]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[28]  B. Anderson,et al.  Analysis of discrete physical systems , 1967, IEEE Transactions on Automatic Control.

[29]  Thomas H. Blakesley XLII. A new electrical Theorem , 1894 .

[30]  Singiresu S Rao,et al.  A Comparative Study of Evidence Theories in the Modeling, Analysis, and Design of Engineering Systems , 2013 .

[31]  A. Recski Matroid theory and its applications in electric network theory and in statics , 1989 .

[33]  C. Desoer,et al.  Degenerate networks and minimal differential equations , 1975 .

[34]  L. Chua,et al.  A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of autonomous networks , 1976 .

[35]  I. I Ere̋min Programme, spiele, transportnetze: C. Berge, A. Ghouila-Houri. Leipzig , 1968 .

[36]  Alan N. Willson,et al.  Nonlinear networks : theory and analysis , 1975 .

[37]  C. G. Montgomery,et al.  Principles of Microwave Circuits , 1965 .

[38]  H. K. Kesavan,et al.  Simulation of Multibody Systems Using the Vector-Network Model , 1978 .

[39]  S. Pastore,et al.  Capturing all branches of any one-port characteristic in piecewise-linear resistive circuits , 1996 .

[40]  Gunther Reissig,et al.  Differential-algebraic equations and impasse points , 1996 .

[41]  G. Minty Monotone networks , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  Felix F. Wu,et al.  NONLINEAR MONOTONE NETWORKS , 1974 .

[43]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[44]  A LeonO.EtAl.Chu,et al.  Linear and nonlinear circuits , 2014 .

[45]  E. J. Purslow Non-Linear Circuits , 1987 .

[46]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[47]  C. Someda Bigenerator-An Active Pathological Network , 1969 .

[48]  Sundaram Seshu,et al.  Linear Graphs and Electrical Networks , 1961 .

[49]  S. Pastore,et al.  Polyhedral elements: a new algorithm for capturing all the equilibrium points of piecewise-linear circuits , 1993 .

[50]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[51]  Albrecht Reibiger,et al.  Global DC-Analysis with the Aid of Standard Network Analysis Programs , 2004 .

[52]  Jr. A. Willson The no-gain property for networks containing three-terminal elements , 1975 .

[53]  Chun-Yueh Huang,et al.  Characteristic Investigation of New Pathological Elements , 2005 .

[54]  M. N. Shanmukha Swamy,et al.  Graphs: Theory and Algorithms , 1992 .

[55]  L. M. Milne-Thomson,et al.  Grundlagen der Mathematik , 1935, Nature.

[56]  H. Mann Physical modeling with multipoles , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[57]  Torsten Mütze,et al.  A new proof of the colored branch Theorem , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[58]  R. Tennant Algebra , 1941, Nature.

[59]  H. Whitney 2-Isomorphic Graphs , 1933 .

[60]  陈崇源,et al.  使用《Basic circuit Theory》进行教学的初步体会 , 1980 .

[61]  Leon O. Chua,et al.  High‐order non‐linear circuit elements: Circuit‐theoretic properties , 1983 .

[62]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[63]  P. K. M'pherson,et al.  Linear Network Theory , 2014 .

[64]  L. Chua,et al.  Geometric properties of resistive nonlinear n-ports - Transversality, structural stability, reciprocity, and anti-reciprocity , 1980 .

[65]  R. M. Foster,et al.  Geometrical circuits of electrical networks , 1932, Electrical Engineering.

[66]  H. Motz Einführung in die Synthese Elektrischer Siebschaltungen mit Vorgeschriebenen Eigenschaften , 1964 .

[67]  Wilhelm Cauer,et al.  Theorie der linearen Wechselstromschaltungen , 1940 .

[68]  Alan S. Perelson,et al.  Description of electrical networks using bond graphs , 1976 .

[69]  G. Oster,et al.  Network Thermodynamics , 1971, Nature.

[70]  B. McMillan Introduction to formal realizability theory — II , 1952 .

[71]  V. Belevitch Four-Dimensional Transformations of 4-Pole Matrices with Applications to the Synthesis of Reactance 4-Poles , 1956 .

[73]  L. Chua,et al.  A qualitative analysis of the behavior of dynamic nonlinear networks: Steady-state solutions of nonautonomous networks , 1976 .

[74]  Donald Albert Calahan,et al.  Modern network synthesis , 1964 .

[75]  Kishore Singhal,et al.  Computer Methods for Circuit Analysis and Design , 1983 .

[76]  H. Thielmann Analysis of linear active (n+l)-poles by simple transformations of the nodal admittance matrix , 1973 .

[77]  Thomas H Blakesley,et al.  A new Electrical Theorem , 2022 .

[78]  E. E. Dweck,et al.  Theory of Linear Active Networks , 1968 .

[79]  Leon O. Chua,et al.  Device modeling via nonlinear circuit elements , 1980 .

[80]  Hassler Whitney,et al.  On the Classification of Graphs , 1933 .

[81]  Ronald A Rohrer,et al.  Circuit Theory an introduction to the State Variable Approach , 1969 .

[82]  Don H. Johnson,et al.  Origins of the equivalent circuit concept: the current-source equivalent , 2003, Proc. IEEE.

[83]  Alan S. Perelson Bond Graph Sign Conventions , 1975 .

[84]  A. Reibiger Auxiliary branch method and modified nodal voltage equations , 2008 .

[85]  W. Wetterling C. Berge und A. Ghouila-Houri, Programme, Spiele, Transportnetze. (Übers. a. d. Französischen.) 256 S. m. 77 Abb. Leipzig 1967. B. G. Teubner Verlagsgesellschaft. Preis geb. 42,– M , 1971 .

[86]  Wolfgang Mathis,et al.  Mathematical foundations of the TC-method for computing multiple DC-operating points , 2003 .

[87]  P. E. Wellstead,et al.  Introduction to physical system modelling , 1979 .

[88]  R. W. Newcomb,et al.  The Foundations of Network Theory , 1963 .

[89]  Ahmed M. Soliman,et al.  On the Voltage Mirrors and the Current Mirrors , 2002 .

[90]  A. Reibiger,et al.  Bond graphs and matroids , 2000 .

[91]  Gabriel Kron,et al.  Diakoptics : the piecewise solution of large-scale systems , 1963 .

[92]  Leon O. Chua,et al.  The colored branch theorem and its applications in circuit theory , 1980 .

[93]  István Vágó Graph Theory: Application to the Calculation of Electrical Networks , 1985 .

[94]  A. Friedman Foundations of modern analysis , 1970 .