A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability

The evolution of high-speed initially laminar multicomponent flows into a turbulent multi-material mixing entity, e.g., in the Richtmyer-Meshkov instability, poses significant challenges for high-fidelity numerical simulations. Although high-order shock- and interface-capturing schemes represent such flows well at early times, the excessive numerical dissipation thereby introduced and the resulting computational cost prevent the resolution of small-scale features. Furthermore, unless special care is taken, shock-capturing schemes generate spurious pressure oscillations at material interfaces where the specific heats ratio varies. To remedy these problems, a solution-adaptive high-order central/shock-capturing finite difference scheme is presented for efficient computations of compressible multi-material flows, including turbulence. A new discontinuity sensor discriminates between smooth and discontinuous regions. The appropriate split form of (energy preserving) central schemes is derived for flows of smoothly varying specific heats ratio, such that spurious pressure oscillations are prevented. High-order accurate weighted essentially non-oscillatory (WENO) schemes are applied only at discontinuities; the standard approach is followed for shocks and contacts, but material discontinuities are treated by interpolating the primitive variables. The hybrid nature of the method allows for efficient and accurate computations of shocks and broadband motions, and is shown to prevent pressure oscillations for varying specific heats ratios. The method is assessed through one-dimensional problems with shocks, sharp interfaces and smooth distributions of specific heats ratio, and the two-dimensional single-mode inviscid and viscous Richtmyer-Meshkov instability with re-shock.

[1]  Parviz Moin,et al.  Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves , 2010, J. Comput. Phys..

[2]  D. Pullin,et al.  Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks , 2004 .

[3]  Eleuterio F. Toro,et al.  Finite-volume WENO schemes for three-dimensional conservation laws , 2004 .

[4]  P. Moin,et al.  A General Class of Commutative Filters for LES in Complex Geometries , 1998 .

[5]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[6]  Joel H. Ferziger,et al.  A robust high-order compact method for large eddy simulation , 2003 .

[7]  Norman J. Zabusky,et al.  Vortex-accelerated secondary baroclinic vorticity deposition and late-intermediate time dynamics of a two-dimensional Richtmyer–Meshkov interface , 2003 .

[8]  D. Drikakis,et al.  Assessment of very high order of accuracy in implicit LES models , 2007 .

[9]  Keh-Ming Shyue,et al.  An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems , 1998 .

[10]  G. M. Ward,et al.  A study of planar Richtmyer-Meshkov instability in fluids with Mie-Grüneisen equations of state , 2011 .

[11]  Parviz Moin,et al.  Higher entropy conservation and numerical stability of compressible turbulence simulations , 2004 .

[12]  Ravi Samtaney,et al.  On initial‐value and self‐similar solutions of the compressible Euler equations , 1996 .

[13]  Johan Larsson,et al.  Stability criteria for hybrid difference methods , 2008, J. Comput. Phys..

[14]  Yohei Morinishi,et al.  Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows , 2010, J. Comput. Phys..

[15]  S. Osher,et al.  Simplified Discretization of Systems of Hyperbolic Conservation Laws Containing Advection Equations , 2000, Journal of Computational Physics.

[16]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[17]  J. Jacobs,et al.  PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF6 interface , 2002, Journal of Fluid Mechanics.

[18]  M. Bernardini,et al.  The wall pressure signature of transonic shock/boundary layer interaction , 2011, Journal of Fluid Mechanics.

[19]  D. I. Meiron,et al.  Atwood ratio dependence of Richtmyer–Meshkov flows under reshock conditions using large-eddy simulations , 2011, Journal of Fluid Mechanics.

[20]  Oleg Schilling,et al.  Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  M. Pino Martín,et al.  Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence , 2007, J. Comput. Phys..

[22]  Particle image velocimetry study of the shock-induced single mode Richtmyer–Meshkov instability , 2008 .

[23]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[24]  Non-spherical core collapse supernovae - II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A , 2005, astro-ph/0511369.

[25]  M. Brouillette THE RICHTMYER-MESHKOV INSTABILITY , 2002 .

[26]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[27]  Anastasios S. Lyrintzis,et al.  High‐order shock capturing schemes for turbulence calculations , 2009 .

[28]  Dimitris Drikakis,et al.  On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes , 2008, J. Comput. Phys..

[29]  Sergio Pirozzoli,et al.  Numerical Methods for High-Speed Flows , 2011 .

[30]  Eric Johnsen Analysis of Numerical Errors Generated by Slowly Moving Shock Waves , 2013 .

[31]  R. J. R. Williams,et al.  An improved reconstruction method for compressible flows with low Mach number features , 2008, J. Comput. Phys..

[32]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[33]  E. Johnsen,et al.  Recovery discontinuous Galerkin method for compressible turbulence , 2013 .

[34]  Shigeru Obayashi,et al.  Numerical (error) issues on compressible multicomponent flows using a high-order differencing scheme: Weighted compact nonlinear scheme , 2012, J. Comput. Phys..

[35]  Oleg Schilling,et al.  Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability , 2006, J. Comput. Phys..

[36]  Gregory A. Blaisdell,et al.  The effect of the formulation of nonlinear terms on aliasing errors in spectral methods , 1996 .

[37]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[38]  Christopher A. Kennedy,et al.  Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible fluid , 2008, J. Comput. Phys..

[39]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[40]  Kenneth K. Kuo,et al.  A low-dissipation and time-accurate method for compressible multi-component flow with variable specific heat ratios , 2011, J. Comput. Phys..

[41]  Tariq D. Aslam,et al.  The effect of diffusion on the dynamics of unsteady detonations , 2012, Journal of Fluid Mechanics.

[42]  Vincent Guinot,et al.  High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes , 2000 .

[43]  Joel H. Ferziger,et al.  Numerical simulation of a compressible, homogeneous, turbulent shear flow , 1981 .

[44]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[45]  Eric Johnsen,et al.  Implementation of WENO schemes in compressible multicomponent flow problems , 2005, J. Comput. Phys..

[46]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[47]  W. Don,et al.  High order Hybrid central-WENO finite difference scheme for conservation laws , 2007 .

[48]  Sergio Pirozzoli,et al.  Generalized conservative approximations of split convective derivative operators , 2010, J. Comput. Phys..

[49]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[50]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[51]  Shi Jin,et al.  The Effects of Numerical Viscosities , 1996 .

[52]  C. Bogey,et al.  A family of low dispersive and low dissipative explicit schemes for flow and noise computations , 2004 .

[53]  Domenic D'Ambrosio,et al.  Numerical Instablilities in Upwind Methods: Analysis and Cures for the “Carbuncle” Phenomenon , 2001 .

[54]  Eric Johnsen,et al.  Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows , 2012, J. Comput. Phys..

[55]  Sanjiva K. Lele,et al.  Direct numerical simulations of canonical shock/turbulence interaction , 2008, Proceeding of Sixth International Symposium on Turbulence and Shear Flow Phenomena.