Using query contexts in information retrieval

User query is an element that specifies an information need, but it is not the only one. Studies in literature have found many contextual factors that strongly influence the interpretation of a query. Recent studies have tried to consider the user's interests by creating a user profile. However, a single profile for a user may not be sufficient for a variety of queries of the user. In this study, we propose to use query-specific contexts instead of user-centric ones, including context around query and context within query. The former specifies the environment of a query such as the domain of interest, while the latter refers to context words within the query, which is particularly useful for the selection of relevant term relations. In this paper, both types of context are integrated in an IR model based on language modeling. Our experiments on several TREC collections show that each of the context factors brings significant improvements in retrieval effectiveness.

[1]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[2]  Kenneth Ward Church,et al.  Word Association Norms, Mutual Information, and Lexicography , 1989, ACL.

[3]  Philip K. Chan,et al.  Personalized Ranking of Search Results with Learned User Interest Hierarchies from Bookmarks , 2005 .

[4]  W. Bruce Croft,et al.  Cluster-based retrieval using language models , 2004, SIGIR '04.

[5]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.

[6]  Xiaohua Hu,et al.  Context-sensitive semantic smoothing for the language modeling approach to genomic IR , 2006, SIGIR.

[7]  Ellen M. Voorhees,et al.  Query expansion using lexical-semantic relations , 1994, SIGIR '94.

[8]  Ruth C. T. Morris Toward a User-Centered Information Service , 1994, J. Am. Soc. Inf. Sci..

[9]  Taemin Kim Park,et al.  Toward a Theory of User-Based Relevance: A Call for a New Paradigm of Inquiry , 1994, J. Am. Soc. Inf. Sci..

[10]  Clement T. Yu,et al.  Personalized web search by mapping user queries to categories , 2002, CIKM '02.

[11]  Susan T. Dumais,et al.  Personalizing Search via Automated Analysis of Interests and Activities , 2005, SIGIR.

[12]  Jian-Yun Nie,et al.  Modèles de langue appliqués à la recherche d'information contextuelle , 2006, CORIA.

[13]  Nicholas J. Belkin,et al.  Interaction with Texts: Information Retrieval as Information-Seeking Behavior , 1993, Information Retrieval.

[14]  Ruth C. T. Morris Toward a user-centered information service , 1994 .

[15]  W. Bruce Croft,et al.  Context-Based Topic Models for Query Modification , 2005 .

[16]  Hinrich Schütze,et al.  Personalized search , 2002, CACM.

[17]  Raymond Y. K. Lau,et al.  Belief revision for adaptive information retrieval , 2004, SIGIR '04.

[18]  John D. Lafferty,et al.  Information retrieval as statistical translation , 1999, SIGIR '99.

[19]  Jianfeng Gao,et al.  Linear discriminant model for information retrieval , 2005, SIGIR '05.

[20]  Xuehua Shen,et al.  Context-sensitive information retrieval using implicit feedback , 2005, SIGIR '05.

[21]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[22]  Qiang Yang,et al.  Query enrichment for web-query classification , 2006, TOIS.

[23]  J. Jenkins,et al.  Word association norms , 1964 .

[24]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[25]  Jian-Yun Nie,et al.  Context-Dependent Term Relations for Information Retrieval , 2006, EMNLP.

[26]  Taemin Kim Park Toward a theory of user-based relevance: a call for a new paradigm of inquiry , 1994 .

[27]  Wolfgang Nejdl,et al.  Using ODP metadata to personalize search , 2005, SIGIR '05.

[28]  Mark Sanderson,et al.  Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ , 2022 .

[29]  David Yarowsky,et al.  Unsupervised Word Sense Disambiguation Rivaling Supervised Methods , 1995, ACL.

[30]  Hans-Peter Frei,et al.  Concept based query expansion , 1993, SIGIR.

[31]  Dale Schuurmans,et al.  Augmenting Naive Bayes Classifiers with Statistical Language Models , 2004, Information Retrieval.

[32]  ChengXiang Zhai,et al.  Semantic term matching in axiomatic approaches to information retrieval , 2006, SIGIR.

[33]  Peter Ingwersen,et al.  Information retrieval in context: IRiX , 2005, SIGF.

[34]  John D. Lafferty,et al.  Information Retrieval as Statistical Translation , 2017 .

[35]  Hinrich Schütze,et al.  A Cooccurrence-Based Thesaurus and Two Applications to Information Retrieval , 1994, Inf. Process. Manag..

[36]  W. Bruce Croft,et al.  Relevance Feedback and Personalization: A Language Modeling Perspective , 2001, DELOS.

[37]  Michael B. Eisenberg,et al.  A re-examination of relevance: toward a dynamic, situational definition , 1990, Inf. Process. Manag..