Automatic transportation of biological cells with a robot-tweezer manipulation system

The positioning of biological cells has become increasingly important in biomedical research such as drug discovery, cell-to-cell interaction, and tissue engineering. Significant demand for both accuracy and productivity in cell manipulation highlights the need for automated cell transportation with integrated robotics and micro/nano-manipulation technologies. Optical tweezers, which use highly focused low-power laser beams to trap and manipulate particles at the micro/nanoscale, can be treated as special robot ‘end-effectors’ to manipulate biological objects in a noninvasive way. In this paper, we propose to use a robot-tweezer manipulation system for automatic transportation of biological cells. A dynamics equation of the cell in an optical trap is analyzed. Closed-loop controllers are designed for positioning single cells as well as multiple cells. A synchronization control technology is utilized for multicell transportation with maintained cell pattern. Experiments are performed on transporting live cells to demonstrate the effectiveness of the proposed approach.

[1]  Yoshio Tanaka,et al.  Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques. , 2008, Optics express.

[2]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[3]  Stefan Seeger,et al.  Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers , 1999, FEBS letters.

[4]  J. Squier,et al.  Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. , 2006, Lab on a chip.

[5]  Sangeeta N Bhatia,et al.  Microfabricated platform for studying stem cell fates , 2004, Biotechnology and bioengineering.

[6]  Fumihito Arai,et al.  Synchronized laser micromanipulation of multiple targets along each trajectory by single laser , 2004 .

[7]  Dieter Blaas,et al.  Capillary electrophoresis of biological particles: Viruses, bacteria, and eukaryotic cells , 2004, Electrophoresis.

[8]  Hans-Hermann Gerdes,et al.  Nanotubular Highways for Intercellular Organelle Transport , 2004, Science.

[9]  Dong Sun,et al.  Adaptive synchronized control for coordination of multirobot assembly tasks , 2002, IEEE Trans. Robotics Autom..

[10]  Lu Ren,et al.  Synchronous Tracking Control of Parallel Manipulators Using Cross-coupling Approach , 2006, Int. J. Robotics Res..

[11]  Craig A. Simmons,et al.  A micromanipulation system for single cell deposition , 2010, 2010 IEEE International Conference on Robotics and Automation.

[12]  Dong Sun,et al.  Mechanical force characterization in manipulating live cells with optical tweezers. , 2011, Journal of biomechanics.

[13]  C. Schmidt,et al.  Signals and noise in micromechanical measurements. , 1998, Methods in cell biology.

[14]  Fumihito Arai,et al.  Multi-beam laser micromanipulation of microtool by integrated optical tweezers , 2009, 2009 IEEE International Conference on Robotics and Automation.

[15]  Simon Hanna,et al.  Holographic optical trapping of microrods and nanowires. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  R. M. Westervelt,et al.  Dielectrophoresis tweezers for single cell manipulation , 2006, Biomedical microdevices.

[17]  Robert C. Gauthier,et al.  Optical levitation of spheres: analytical development and numerical computations of the force equations , 1995 .

[18]  Gary J. Brouhard,et al.  Advanced optical tweezers for the study of cellular and molecular biomechanics , 2003, IEEE Transactions on Biomedical Engineering.

[19]  Richard A. Flynn,et al.  Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers , 2002 .

[20]  Dong Sun,et al.  Transportation of biological cells with robot-tweezer manipulation system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[21]  František Baluška,et al.  Cell-Cell Channels , 2007 .

[22]  Gail McConnell,et al.  Optical trapping and manipulation of live T cells with a low numerical aperture lens. , 2008, Optics express.

[23]  Dong Sun,et al.  A Force Control Approach to a Robot-assisted Cell Microinjection System , 2010, Int. J. Robotics Res..

[24]  H. Gerdes,et al.  Intercellular transfer mediated by tunneling nanotubes. , 2008, Current opinion in cell biology.

[25]  Gang Feng,et al.  Dynamics analysis and closed-loop control of biological cells in transportation using robotic manipulation system with optical tweezers , 2010, 2010 IEEE International Conference on Automation Science and Engineering.

[26]  Q. Sattentau,et al.  Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission , 2008, Nature Cell Biology.

[27]  Deirdre R. Meldrum,et al.  Life-on-a-chip , 2003, Nature Reviews Microbiology.

[28]  C P Grover,et al.  Automated single-cell sorting system based on optical trapping. , 2001, Journal of biomedical optics.

[29]  Zhaohui Hu,et al.  Experimental measurement and analysis of the optical trapping force acting on a yeast cell with a lensed optical fiber probe , 2007 .

[30]  Shoji Takeuchi,et al.  Rapid and Direct Cell-to-Cell Adherence Using Avidin-Biotin Binding System: Large Aggregate Formation in Suspension Culture and Small Tissue Element Formation Having a Precise Microstructure Using Optical Tweezers , 2010, J. Robotics Mechatronics.

[31]  R. Hochmuth,et al.  Micropipette aspiration of living cells. , 2000, Journal of biomechanics.

[32]  Guangyong Li,et al.  Development of augmented reality system for AFM-based nanomanipulation , 2004, IEEE/ASME Transactions on Mechatronics.

[33]  Wolfgang Losert,et al.  Investigating gradient sensing in cells through optical micromanipulation , 2005, SPIE BiOS.

[34]  Jake J. Abbott,et al.  Robotics in the Small, Part I: Microbotics , 2007, IEEE Robotics & Automation Magazine.

[35]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[36]  Yantao Shen,et al.  An efficient approach of handling and deposition of micro and nano entities using sensorized microfluidic end-effector system , 2008 .

[37]  Stéphane Régnier,et al.  Touching the microworld with force-feedback optical tweezers. , 2009, Optics express.

[38]  Dong Sun,et al.  A MODEL-FREE CROSS-COUPLED CONTROL FOR POSITION SYNCHRONIZATION OF MULTI-AXIS MOTIONS: THEORY AND EXPERIMENTS , 2005 .

[39]  Edward Hæggström,et al.  Stiffer Optical Tweezers through Real-Time Feedback Control , 2008 .

[40]  Gregory Timp,et al.  Optimal optical trap for bacterial viability. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Bassam Bamieh,et al.  Modeling, Identification, and Control of a Spherical Particle Trapped in an Optical Tweezer , 2022 .

[42]  Dong Sun,et al.  Force characterization of live cells in automated transportation with robot-tweezers manipulation system , 2010, 2010 IEEE International Conference on Mechatronics and Automation.

[43]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[44]  Michael P Hughes,et al.  Strategies for dielectrophoretic separation in laboratory‐on‐a‐chip systems , 2002, Electrophoresis.

[45]  Hakho Lee,et al.  Manipulation of biological cells using a microelectromagnet matrix , 2004 .

[46]  Kurt D. Wulff,et al.  Servo control of an optical trap. , 2007, Applied optics.

[47]  H. Hashimoto,et al.  Controlled pushing of nanoparticles: modeling and experiments , 2000 .

[48]  Gang Feng,et al.  A Synchronization Approach to Trajectory Tracking of Multiple Mobile Robots While Maintaining Time-Varying Formations , 2009, IEEE Transactions on Robotics.

[49]  K. Jensen,et al.  Cells on chips , 2006, Nature.

[50]  Yasser H. Anis,et al.  Automated Selection and Placement of Single Cells Using Vision-Based Feedback Control , 2010, IEEE Transactions on Automation Science and Engineering.

[51]  M W Berns,et al.  Micromanipulation of Chromosomes in PTK2 Cells Using Laser Microsurgery in Combination with Laser-Induced Optical Force , 1993 .

[52]  Andrew A. Bettiol,et al.  Microfluidic sorting system based on optical force switching , 2009, MOEMS-MEMS.

[53]  A. Folch,et al.  Large-scale single-cell trapping and imaging using microwell arrays. , 2005, Analytical chemistry.

[54]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[55]  Dong Sun,et al.  Mechanical modeling of biological cells in microinjection. , 2008, IEEE transactions on nanobioscience.

[56]  Chia-Hsiang Menq,et al.  Minimum-variance Brownian motion control of an optically trapped probe. , 2009, Applied optics.

[57]  H. Oertel Prandtl's essentials of fluid mechanics , 2004 .

[58]  M W Berns,et al.  Micromanipulation of chromosomes in PTK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers). , 1993, Experimental cell research.

[59]  Vincent Germain,et al.  Automated trapping, assembly, and sorting with holographic optical tweezers. , 2006, Optics express.

[60]  Giovanni Volpe,et al.  Raman imaging of floating cells. , 2005, Optics express.

[61]  Dong Sun Position synchronization of multiple motion axes with adaptive coupling control , 2003, Autom..

[62]  John O. Kessler,et al.  Hydrodynamic focusing of motile algal cells , 1985, Nature.

[63]  Satyandra K. Gupta,et al.  Developing a Stochastic Dynamic Programming Framework for Optical Tweezer-Based Automated Particle Transport Operations , 2010, IEEE Transactions on Automation Science and Engineering.

[64]  M W Berns,et al.  Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap. , 1991, Cytometry.

[65]  Koji Ikuta,et al.  Submicron manipulation tools driven by light in a liquid , 2003 .

[66]  Gregory T. Roman,et al.  Single-cell manipulation and analysis using microfluidic devices , 2006, Analytical and bioanalytical chemistry.

[67]  Thomas Huser,et al.  Manipulating CD4+ T cells by optical tweezers for the initiation of cell‐cell transfer of HIV‐1 , 2010, Journal of biophotonics.

[68]  K. O. Greulich,et al.  Micromanipulation by light in biology and medicine : the laser microbeam and optical tweezers , 1999 .