ANISEED 2015: a digital framework for the comparative developmental biology of ascidians

Ascidians belong to the tunicates, the sister group of vertebrates and are recognized model organisms in the field of embryonic development, regeneration and stem cells. ANISEED is the main information system in the field of ascidian developmental biology. This article reports the development of the system since its initial publication in 2010. Over the past five years, we refactored the system from an initial custom schema to an extended version of the Chado schema and redesigned all user and back end interfaces. This new architecture was used to improve and enrich the description of Ciona intestinalis embryonic development, based on an improved genome assembly and gene model set, refined functional gene annotation, and anatomical ontologies, and a new collection of full ORF cDNAs. The genomes of nine ascidian species have been sequenced since the release of the C. intestinalis genome. In ANISEED 2015, all nine new ascidian species can be explored via dedicated genome browsers, and searched by Blast. In addition, ANISEED provides full functional gene annotation, anatomical ontologies and some gene expression data for the six species with highest quality genomes. ANISEED is publicly available at: http://www.aniseed.cnrs.fr.

[1]  Paul Richardson,et al.  The Draft Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins , 2002, Science.

[2]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[3]  Kazuho Ikeo,et al.  A web‐based interactive developmental table for the ascidian Ciona intestinalis, including 3D real‐image embryo reconstructions: I. From fertilized egg to hatching larva , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[4]  Huaiyu Mi,et al.  The InterPro protein families database: the classification resource after 15 years , 2014, Nucleic Acids Res..

[5]  Vincent Bertrand,et al.  A combinatorial code of maternal GATA, Ets and β-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm , 2007, Development.

[6]  Yasunori Sasakura,et al.  CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis , 2014, Development, growth & differentiation.

[7]  Y. Sasakura,et al.  Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis , 2012, Development, growth & differentiation.

[8]  Vincent J. Lynch,et al.  Use with caution: Developmental systems divergence and potential pitfalls of animal models , 2009, The Yale journal of biology and medicine.

[9]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[10]  Kirill Degtyarenko,et al.  ChEBI: An Open Bioinformatics and Cheminformatics Resource , 2009, Current protocols in bioinformatics.

[11]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[12]  Takeshi Kawashima,et al.  The Transcription/Migration Interface in Heart Precursors of Ciona intestinalis , 2008, Science.

[13]  Ian A Meinertzhagen,et al.  Neurons of the ascidian larval nervous system in Ciona intestinalis: I. Central nervous system , 2007, The Journal of comparative neurology.

[14]  Lionel Christiaen,et al.  Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates. , 2015, Current opinion in genetics & development.

[15]  Monte Westerfield,et al.  The zebrafish anatomy and stage ontologies: representing the anatomy and development of Danio rerio , 2014, Journal of Biomedical Semantics.

[16]  M. Lovett,et al.  The applications of single-cell genomics. , 2013, Human molecular genetics.

[17]  Ian A Meinertzhagen,et al.  Neurons of the ascidian larval nervous system in Ciona intestinalis: II. Peripheral nervous system , 2007, The Journal of comparative neurology.

[18]  Ken Dewar,et al.  Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations , 2008, Genome Biology.

[19]  Irving L. Weissman,et al.  Isolation and characterization of a protochordate histocompatibility locus , 2005, Nature.

[20]  Erik L. L. Sonnhammer,et al.  InParanoid 7: new algorithms and tools for eukaryotic orthology analysis , 2009, Nucleic Acids Res..

[21]  H. Nishida,et al.  Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. , 1987, Developmental biology.

[22]  Thorsten Henrich,et al.  Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE) , 2008, Nature Biotechnology.

[23]  Kengo Kinoshita,et al.  DBTGR: a database of tunicate promoters and their regulatory elements , 2006, Nucleic Acids Res..

[24]  N. Satoh,et al.  Action of morpholinos in Ciona embryos , 2001, Genesis.

[25]  Chris Mungall,et al.  A Chado case study: an ontology-based modular schema for representing genome-associated biological information , 2007, ISMB/ECCB.

[26]  Nicolas Bierne,et al.  Crossing the species barrier: genomic hotspots of introgression between two highly divergent Ciona intestinalis species. , 2013, Molecular biology and evolution.

[27]  Michael Levine,et al.  Regulatory Blueprint for a Chordate Embryo , 2006, Science.

[28]  Hitoyoshi Yasuo,et al.  Similarity and diversity in mechanisms of muscle fate induction between ascidian species , 2008, Biology of the cell.

[29]  P. Lemaire,et al.  A Quantitative Approach to the Study of Cell Shapes and Interactions during Early Chordate Embryogenesis , 2006, Current Biology.

[30]  Lionel Christiaen,et al.  FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. , 2006, Genes & development.

[31]  P. Lemaire,et al.  Ci-FoxA-a is the earliest zygotic determinant of the ascidian anterior ectoderm and directly activates Ci-sFRP1/5 , 2006, Development.

[32]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[33]  C. T. Brown,et al.  Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians , 2014, eLife.

[34]  Lionel Christiaen,et al.  Early Chordate Origins of the Vertebrate Second Heart Field , 2010, Science.

[35]  Debashis Sahoo,et al.  Identification of a Colonial Chordate Histocompatibility Gene , 2013, Science.

[36]  Takeshi Kawashima,et al.  A cDNA resource from the basal chordate Ciona intestinalis , 2002, Genesis.

[37]  C. Gissi,et al.  Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis , 2015 .

[38]  Karen Eilbeck,et al.  Evolution of the Sequence Ontology terms and relationships , 2009, J. Biomed. Informatics.

[39]  Lionel Christiaen,et al.  Microinjection of morpholino oligos and RNAs in sea squirt (Ciona) embryos. , 2009, Cold Spring Harbor protocols.

[40]  Anton Nekrutenko,et al.  Integrating diverse databases into an unified analysis framework: a Galaxy approach , 2011, Database J. Biol. Databases Curation.

[41]  J. True,et al.  Developmental system drift and flexibility in evolutionary trajectories , 2001, Evolution & development.

[42]  L. Wolpert,et al.  The Unnatural Nature of Science , 1993, The Lancet.

[43]  Michael Levine,et al.  Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system , 2009, Development.

[44]  Rachael P. Huntley,et al.  Standardized description of scientific evidence using the Evidence Ontology (ECO) , 2014, Database J. Biol. Databases Curation.

[45]  P. Lemaire Evolutionary crossroads in developmental biology: the tunicates , 2011, Development.

[46]  Carmela Gissi,et al.  Morphological Differences between Larvae of the Ciona intestinalis Species Complex: Hints for a Valid Taxonomic Definition of Distinct Species , 2015, PloS one.

[47]  Wei Wang,et al.  Transcriptional enhancers in ascidian development. , 2012, Current topics in developmental biology.

[48]  Richard Bonneau,et al.  Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors. , 2014, Developmental cell.

[49]  L. Stein,et al.  JBrowse: a next-generation genome browser. , 2009, Genome research.

[50]  Delphine Dauga,et al.  Guidelines for the nomenclature of genetic elements in tunicate genomes , 2015, Genesis.

[51]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[52]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[53]  Kotaro Oka,et al.  Three-dimensional anatomy of the Ciona intestinalis tailbud embryo at single-cell resolution. , 2012, Developmental biology.

[54]  Lionel Christiaen,et al.  A new heart for a new head in vertebrate cardiopharyngeal evolution , 2015, Nature.

[55]  Tetsushi Sakuma,et al.  Germ cell mutations of the ascidian Ciona intestinalis with TALE nucleases , 2014, Genesis.

[56]  Aaron M. Newman,et al.  The genome sequence of the colonial chordate, Botryllus schlosseri , 2013, eLife.

[57]  Matthew M. Hill,et al.  A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome , 2007, Genome Biology.

[58]  Monica C Munoz-Torres,et al.  Web Apollo: a web-based genomic annotation editing platform , 2013, Genome Biology.

[59]  Federico D. Brown Faculty Opinions recommendation of Identification of a rudimentary neural crest in a non-vertebrate chordate. , 2017 .

[60]  Robert W. Zeller,et al.  Ascidians: an invertebrate chordate model to study Alzheimer’s disease pathogenesis , 2010, Disease Models & Mechanisms.

[61]  Csongor Nyulas,et al.  BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications , 2011, Nucleic Acids Res..

[62]  Wei Wang,et al.  NK4 Antagonizes Tbx1/10 to Promote Cardiac versus Pharyngeal Muscle Fate in the Ascidian Second Heart Field , 2013, PLoS biology.

[63]  Alberto Stolfi,et al.  Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9 , 2014, Development.

[64]  Kenta Nakai,et al.  Genomic cis-regulatory networks in the early Ciona intestinalis embryo , 2010, Development.

[65]  Maureen J Donlin,et al.  Using the Generic Genome Browser (GBrowse) , 2007, Current protocols in bioinformatics.

[66]  E. Munro,et al.  Sequential Activation of Apical and Basolateral Contractility Drives Ascidian Endoderm Invagination , 2010, Current Biology.

[67]  William C. Smith,et al.  Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper. , 2013, Developmental biology.

[68]  Irving L. Weissman,et al.  Botryllus schlosseri, an emerging model for the study of aging, stem cells, and mechanisms of regeneration , 2014, Invertebrate reproduction & development.

[69]  F. Delsuc,et al.  Tunicates and not cephalochordates are the closest living relatives of vertebrates , 2006, Nature.

[70]  W. Jeffery,et al.  Evolution of alternate modes of development in ascidians , 1992, BioEssays : news and reviews in molecular, cellular and developmental biology.

[71]  Vincent Bertrand,et al.  Neural Tissue in Ascidian Embryos Is Induced by FGF9/16/20, Acting via a Combination of Maternal GATA and Ets Transcription Factors , 2003, Cell.

[72]  A. Sandelin,et al.  Identification of conserved regulatory elements by comparative genome analysis , 2003, Journal of biology.

[73]  C. M. Child The Organization and Cell-lineage of the Ascidian Egg , 1906 .

[74]  Yasunori Sasakura,et al.  Neuronal map reveals the highly regionalized pattern of the juvenile central nervous system of the ascidian Ciona intestinalis , 2015, Developmental dynamics : an official publication of the American Association of Anatomists.

[75]  W. Jeffery,et al.  Closing the wounds: One hundred and twenty five years of regenerative biology in the ascidian Ciona intestinalis , 2015, Genesis.

[76]  Mayuko Hamada,et al.  Evolution of the chordate regeneration blastema: Differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona. , 2015, Developmental biology.

[77]  Marie L. Nydam,et al.  Polymorphism and divergence within the ascidian genus Ciona. , 2010, Molecular phylogenetics and evolution.

[78]  Tetsushi Sakuma,et al.  Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona , 2014, Development.

[79]  Fabrice Daian,et al.  A pipeline for the systematic identification of non-redundant full-ORF cDNAs for polymorphic and evolutionary divergent genomes: Application to the ascidian Ciona intestinalis , 2015, Developmental biology.

[80]  Nicolas Galtier,et al.  The Population Genomics of a Fast Evolver: High Levels of Diversity, Functional Constraint, and Molecular Adaptation in the Tunicate Ciona intestinalis , 2012, Genome biology and evolution.

[81]  Delphine Dauga,et al.  The ANISEED database: digital representation, formalization, and elucidation of a chordate developmental program. , 2010, Genome research.

[82]  T. Hashimshony,et al.  CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. , 2012, Cell reports.

[83]  M. Levine,et al.  Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. , 1997, Development.