Globally Convergent Algorithms for the Solution of Generalized Nash Equilibrium Problems
暂无分享,去创建一个
[1] Masao Fukushima,et al. Restricted generalized Nash equilibria and controlled penalty algorithm , 2011, Comput. Manag. Sci..
[2] Xiaojun Chen,et al. A penalized Fischer-Burmeister NCP-function , 2000, Math. Program..
[3] J. Goodman. Note on Existence and Uniqueness of Equilibrium Points for Concave N-Person Games , 1965 .
[4] R. W. Chaney. Piecewise functions in nonsmooth analysis , 1990 .
[5] Stephan Dempe,et al. Directional derivatives of the solution of a parametric nonlinear program , 1995, Math. Program..
[6] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[7] Jong-Shi Pang,et al. Piecewise Smoothness, Local Invertibility, and Parametric Analysis of Normal Maps , 1996, Math. Oper. Res..
[8] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[9] Sjur Didrik Flåm,et al. Noncooperative Convex Games: Computing Equilibrium by Partial Regularization , 1994 .
[10] Francisco Facchinei,et al. Nash equilibria: the variational approach , 2010, Convex Optimization in Signal Processing and Communications.
[11] Christian Kanzow,et al. Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions , 2009, Comput. Optim. Appl..
[12] Francisco Facchinei,et al. Partial penalization for the solution of generalized Nash equilibrium problems , 2011, J. Glob. Optim..
[13] P. Harker. Generalized Nash games and quasi-variational inequalities , 1991 .
[14] Christian Kanzow,et al. SC 1 optimization reformulations of the generalized Nash equilibrium problem , 2008, Optim. Methods Softw..
[15] C. Kanzow,et al. Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search , 2009 .
[16] H. Nikaidô,et al. Note on non-cooperative convex game , 1955 .
[17] Oliver Stein,et al. Bi-Level Strategies in Semi-Infinite Programming , 2003 .
[18] Francisco Facchinei,et al. Penalty Methods for the Solution of Generalized Nash Equilibrium Problems , 2010, SIAM J. Optim..
[19] Francisco Facchinei,et al. Distributed Power Allocation With Rate Constraints in Gaussian Parallel Interference Channels , 2007, IEEE Transactions on Information Theory.
[20] G. Tullock. Efficient Rent Seeking , 2001 .
[21] Andreas Fischer,et al. On generalized Nash games and variational inequalities , 2007, Oper. Res. Lett..
[22] Francisco Facchinei,et al. Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..
[23] Tobias Scheffer,et al. Nash Equilibria of Static Prediction Games , 2009, NIPS.
[24] Francisco Facchinei,et al. Generalized Nash equilibrium problems and Newton methods , 2008, Math. Program..
[25] Masao Fukushima,et al. Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..
[26] Hubertus Th. Jongen,et al. On Structure and Computation of Generalized Nash Equilibria , 2013, SIAM J. Optim..
[27] Renato D. C. Monteiro,et al. A Potential Reduction Newton Method for Constrained Equations , 1999, SIAM J. Optim..
[28] Masao Fukushima,et al. A globalized Newton method for the computation of normalized Nash equilibria , 2013, J. Glob. Optim..
[29] Masao Fukushima,et al. Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation , 2012, Math. Program..
[30] F. Facchinei,et al. Hamburger Beitr Age Zur Angewandten Mathematik a Simply Constrained Optimization Reformulation of Kkt Systems Arising from Variational Inequalities Hamburger Beitr Age Zur Angewandten Mathematik Reihe a Preprints Reihe B Berichte Reihe C Mathematische Modelle Und Simulation Reihe D Elektrische Netzw , 1996 .
[31] Masao Fukushima,et al. Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints , 2011, Comput. Optim. Appl..
[32] Luiz Carlos Matioli,et al. A numerical algorithm for finding solutions of a generalized Nash equilibrium problem , 2012, Comput. Optim. Appl..
[33] Gül Gürkan,et al. Approximations of Nash equilibria , 2008, Math. Program..
[34] J. Nash. Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.
[35] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[36] Christian Kanzow,et al. Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems , 2011, Comput. Optim. Appl..
[37] Francisco Facchinei,et al. Exact penalty functions for generalized Nash problems , 2006 .
[38] Stefania Bellavia,et al. STRSCNE: A Scaled Trust-Region Solver for Constrained Nonlinear Equations , 2004, Comput. Optim. Appl..
[39] R. Janin. Directional derivative of the marginal function in nonlinear programming , 1984 .
[40] Stefania Bellavia,et al. An affine scaling trust-region approach to bound-constrained nonlinear systems , 2003 .
[41] Masao Fukushima,et al. Gap Function Approach to the Generalized Nash Equilibrium Problem , 2010 .
[42] Eleftherios Couzoudis,et al. Computing generalized Nash equilibria by polynomial programming , 2013, Math. Methods Oper. Res..
[43] Adrian S. Lewis,et al. A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..
[44] Naihua Xiu,et al. Some projection-like methods for the generalized Nash equilibria , 2010, Comput. Optim. Appl..
[45] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[46] M. Fukushima. A class of gap functions for quasi-variational inequality problems , 2007 .
[47] Francisco Facchinei,et al. A New Merit Function For Nonlinear Complementarity Problems And A Related Algorithm , 1997, SIAM J. Optim..
[48] Francisco Facchinei,et al. Regularity Properties of a Semismooth Reformulation of Variational Inequalities , 1998, SIAM J. Optim..
[49] Richard W. Cottle,et al. Linear Complementarity Problem. , 1992 .
[50] J. Nash,et al. NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.
[51] Jorge J. Moré,et al. Computing a Trust Region Step , 1983 .
[52] Francisco Facchinei,et al. On the solution of the KKT conditions of generalized Nash equilibrium problems , 2011, SIAM J. Optim..
[53] R. Rubinstein,et al. On relaxation algorithms in computation of noncooperative equilibria , 1994, IEEE Trans. Autom. Control..
[54] K. Taji,et al. On Gap Functions for Quasi-Variational Inequalities , 2008 .
[55] Francisco Facchinei,et al. A semismooth equation approach to the solution of nonlinear complementarity problems , 1996, Math. Program..
[56] A. Bensoussan. Points de Nash Dans le Cas de Fonctionnelles Quadratiques et Jeux Differentiels lineaires a N Personnes , 1974 .
[57] Stan Uryasev,et al. Relaxation algorithms to find Nash equilibria with economic applications , 2000 .
[58] W. Hogan. Point-to-Set Maps in Mathematical Programming , 1973 .
[59] K. Arrow,et al. EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .
[60] Francisco Facchinei,et al. A Theoretical and Numerical Comparison of Some Semismooth Algorithms for Complementarity Problems , 2000, Comput. Optim. Appl..
[61] Francisco Facchinei,et al. Decomposition algorithms for generalized potential games , 2011, Comput. Optim. Appl..
[62] Masao Fukushima,et al. Solving box constrained variational inequalities by using the natural residual with D-gap function globalization , 1998, Oper. Res. Lett..
[63] Liqun Qi,et al. A nonsmooth version of Newton's method , 1993, Math. Program..
[64] Oliver Stein,et al. Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems , 2012, J. Glob. Optim..