Maximum set estimators with bounded estimation error

We consider the linear regression problem of estimating a deterministic parameter vector x from observations y = Hx + w, where H is known, and w is additive noise. We seek an estimator whose estimation error does not exceed a given maximum error for as wide a range of conditions as possible. The maximum error is a design choice and is generally lower than the error provided by the well-known least-squares (LS) estimator. We develop estimators guaranteeing the required error for as large a parameter set as possible and for as large a noise level as possible. We discuss methods for finding these estimators and demonstrate that in many cases, the proposed estimators outperform the LS estimator.

[1]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[2]  Yonina C. Eldar,et al.  Linear minimax regret estimation of deterministic parameters with bounded data uncertainties , 2004, IEEE Transactions on Signal Processing.

[3]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[4]  Theodore S. Rappaport,et al.  Wireless Communications -- Principles and Practice, Second Edition. (The Book End) , 2002 .

[5]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[6]  W.H. Tranter,et al.  Simulation of communication systems , 1994, IEEE Communications Magazine.

[7]  Christina Fragouli,et al.  Training-based channel estimation for multiple-antenna broadband transmissions , 2003, IEEE Trans. Wirel. Commun..

[8]  S.A. Kassam,et al.  Robust techniques for signal processing: A survey , 1985, Proceedings of the IEEE.

[9]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[10]  Z. Ben-Haim,et al.  Estimation with maximum error requirements , 2004, 2004 23rd IEEE Convention of Electrical and Electronics Engineers in Israel.

[11]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[12]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[13]  Lesley F. Wright,et al.  Information Gap Decision Theory: Decisions under Severe Uncertainty , 2004 .

[14]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[15]  Yonina C. Eldar,et al.  A competitive minimax approach to robust estimation of random parameters , 2004, IEEE Transactions on Signal Processing.

[16]  Zhi-Fu Wang,et al.  On Biased Estimation in Linear Models , 2006, 2006 International Conference on Machine Learning and Cybernetics.

[17]  H. Vincent Poor,et al.  On minimax robustness: A general approach and applications , 1984, IEEE Trans. Inf. Theory.

[18]  Y. Ben-Haim Set-models of information-gap uncertainty: axioms and an inference scheme , 1999 .

[19]  Yakov Ben-Haim,et al.  Robust rationality and decisions under severe uncertainty , 2000, J. Frankl. Inst..

[20]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[21]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[22]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[23]  Yonina C. Eldar,et al.  Robust mean-squared error estimation in the presence of model uncertainties , 2005, IEEE Transactions on Signal Processing.

[24]  Yonina C. Eldar,et al.  Minimax MSE-ratio estimation with signal covariance uncertainties , 2005, IEEE Transactions on Signal Processing.

[25]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[26]  D. Falconer,et al.  Least sum of squared errors (LSSE) channel estimation , 1991 .

[27]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[28]  Yonina C. Eldar,et al.  Robust Mean-Squared Error Estimation of Multiple Signals in Linear Systems Affected by Model and Noise Uncertainties , 2005, Math. Program..