The hardness of computing an eigenform

In this article, we give evidence that computing Fourier coefficients of the Hecke eigenforms for composite indices is no easier than factoring integers. In particular, we show that the existence of a polynomial time algorithm that, given n, computes the n-th Fourier coefficient of a (fixed) Hecke eigenform implies that we can factor most RSA moduli (numbers that are products of two distinct primes) in polynomial time.

[1]  Fernando Q. Gouvêa Non-Ordinary Primes: A Story , 1997, Exp. Math..

[2]  Ken Ono,et al.  The web of modularity : arithmetic of the coefficients of modular forms and q-series , 2003 .

[3]  William Stein,et al.  Explicit approaches to modular abelian varieties , 2000 .

[4]  志村 五郎,et al.  Introduction to the arithmetic theory of automorphic functions , 1971 .

[5]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[6]  Loïc Merel,et al.  Universal Fourier expansions of modular forms , 1994 .

[7]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[8]  Fred Diamond,et al.  A First Course in Modular Forms , 2008 .

[9]  Jean-Pierre Serre,et al.  Quelques applications du théorème de densité de Chebotarev , 1981 .

[10]  A. Pizer,et al.  An algorithm for computing modular forms on Γ0(N) , 1980 .

[11]  Bas Edixhoven,et al.  On the Computation of the Coefficients of a Modular Form , 2006, ANTS.

[12]  D. Charles,et al.  Computational aspects of modular forms and elliptic curves , 2005 .

[13]  N. Koblitz Introduction to Elliptic Curves and Modular Forms , 1984 .

[14]  Jeffrey Shallit,et al.  Sums of Divisors, Perfect Numbers and Factoring , 1986, SIAM J. Comput..

[15]  H. Cohen,et al.  Dimensions des espaces de formes modulaires , 1977 .

[16]  Alain Robert,et al.  Introduction to modular forms , 1976 .

[17]  Computing the Ramanujan tau function , 2006 .

[18]  Kenneth A. Ribet,et al.  Galois representations attached to eigenforms with nebentypus , 1977 .