Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics

We explain the phenomena of electromagnetically induced transparency (EIT) of a weak probe field and tunable Fano resonances in hybrid optomechanics. The system of study consists of a two-level atom coupled to a single-mode field of an optomechanical resonator with a moving mirror. We show that a single EIT window exists in the presence of optomechanical coupling or Jaynes–Cummings coupling, whereas two distinct double EIT windows occur when both the couplings are simultaneously present. Furthermore, based on our analytical and numerical work, we prove the existence of tunable Fano resonances in the system. The controlling parameters of the system, which switch from a single EIT window to double EIT windows and are needed to tune the Fano resonances, can be realized in present-day laboratory experiments.

[1]  P. Hakonen,et al.  Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator , 2012, Nature.

[2]  D. E. Chang,et al.  Ultrahigh-Q mechanical oscillators through optical trapping , 2010, 1101.0146.

[3]  M. Weidemüller,et al.  Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons. , 2012, Physical review letters.

[4]  M. D. LaHaye,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[5]  Niels Verellen,et al.  Fano resonances in individual coherent plasmonic nanocavities. , 2009, Nano letters.

[6]  K. Qu,et al.  Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems , 2013, 1301.3070.

[7]  P Zoller,et al.  Coupled ion-nanomechanical systems. , 2004, Physical review letters.

[8]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[9]  H. Tamura,et al.  Fano-Kondo interplay in a side-coupled double quantum dot. , 2009, Physical review letters.

[10]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[11]  Juan M. Restrepo,et al.  Single-polariton optomechanics. , 2013, Physical review letters.

[12]  Miguel Orszag,et al.  Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence , 2000 .

[13]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[14]  Q. Gong,et al.  Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity , 2013, Scientific Reports.

[15]  G. Di Giuseppe,et al.  Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment , 2011, 1112.6002.

[16]  Jing Zhang,et al.  Transparency and amplification in a hybrid system of the mechanical resonator and circuit QED , 2012, 1405.5967.

[17]  L. Tian Optoelectromechanical transducer: Reversible conversion between microwave and optical photons , 2014, 1407.3035.

[18]  Mohsen Rahmani,et al.  Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. , 2012, Nano letters.

[19]  M. Lukin Colloquium: Trapping and manipulating photon states in atomic ensembles , 2003 .

[20]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[21]  Yu. A. Pashkin,et al.  Single artificial-atom lasing , 2007, Nature.

[22]  Harris,et al.  Observation of electromagnetically induced transparency. , 1991, Physical review letters.

[23]  P. Meystre,et al.  A short walk through quantum optomechanics , 2012, 1210.3619.

[24]  A. M. Jayich,et al.  Dispersive optomechanics: a membrane inside a cavity , 2008, 0805.3723.

[25]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[26]  Kensuke Kobayashi,et al.  Fano resonance in a quantum wire with a side-coupled quantum dot , 2004 .

[27]  P. Rabl,et al.  Photon blockade effect in optomechanical systems. , 2011, Physical review letters.

[28]  J. Sankey,et al.  Strong and tunable nonlinear optomechanical coupling in a low-loss system , 2010, 1002.4158.

[29]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[30]  G. S. Agarwal,et al.  Electromagnetically induced transparency in mechanical effects of light , 2009, 0911.4157.

[31]  Franco Nori,et al.  Sudden vanishing of spin squeezing under decoherence , 2009, 0909.4834.

[32]  M. Walther,et al.  Fano line shape and phase reversal in a split-ring resonator based metamaterial , 2013 .

[33]  C. Regal,et al.  Strong Optomechanical Squeezing of Light , 2013, 1306.1268.

[34]  Sumei Huang Double electromagnetically induced transparency and narrowing of probe absorption in a ring cavity with nanomechanical mirrors , 2013, 1301.5099.

[35]  H. Kimble,et al.  Atom–light interactions in photonic crystals , 2013, Nature Communications.

[36]  Bob B. Buckley,et al.  All-optical control of a solid-state spin using coherent dark states , 2013, Proceedings of the National Academy of Sciences.

[37]  G. J. Milburn,et al.  Single-photon opto-mechanics in the strong coupling regime , 2010, 1002.1517.

[38]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[39]  M. Paternostro,et al.  Hybrid optomechanics for Quantum Technologies , 2014, 1402.1195.

[40]  P. Nordlander,et al.  Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. , 2012, Nano letters.

[41]  Lukin,et al.  Dark-state polaritons in electromagnetically induced transparency , 2000, Physical review letters.

[42]  Mang Feng,et al.  Tunable double optomechanically induced transparency in an optomechanical system , 2014, 1405.2410.

[43]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[44]  K Hammerer,et al.  Strong coupling of a mechanical oscillator and a single atom. , 2009, Physical review letters.

[45]  F. Saif,et al.  Steady-state entanglement of a Bose-Einstein condensate and a nanomechanical resonator , 2011, 1109.6316.

[46]  S. Harris,et al.  Electromagnetically Induced Transparency , 1991, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[47]  Delicate and robust dynamical recurrences of matter waves in driven optical crystals , 2011, 1109.3373.

[48]  T. Morimoto,et al.  Coupling Quantum States through a Continuum: A Mesoscopic Multistate Fano Resonance , 2012 .

[49]  Robert J. Soulen,et al.  Temperature Scales Below 1 Kelvin , 1997 .

[50]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[51]  H. Kimble,et al.  Cavity QED with atomic mirrors , 2012, 1201.0643.

[52]  Ying-Dan Wang,et al.  Using interference for high fidelity quantum state transfer in optomechanics. , 2011, Physical review letters.

[53]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[54]  Franco Nori,et al.  Cavity optomechanical coupling assisted by an atomic gas , 2008, 0803.0776.

[55]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[56]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[57]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[58]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[59]  G. Fei,et al.  Fano resonance in anodic aluminum oxide based photonic crystals , 2014, Scientific Reports.

[60]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[61]  Harris,et al.  Dispersive properties of electromagnetically induced transparency. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[62]  G. Agarwal,et al.  Reactive-coupling-induced normal mode splittings in microdisk resonators coupled to waveguides , 2010, 1002.2914.

[63]  F. Brennecke,et al.  Cold atoms in cavity-generated dynamical optical potentials , 2012, 1210.0013.

[64]  Qiang Lin,et al.  Supplementary Information for “ Electromagnetically Induced Transparency and Slow Light with Optomechanics ” , 2011 .

[65]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[66]  C. Lin,et al.  Controlling Atomic Line Shapes , 2013, Science.

[67]  P. Tombesi,et al.  Emergence of atom-light-mirror entanglement inside an optical cavity , 2008, 0801.2266.

[68]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[69]  K. Qu,et al.  Fano resonances and their control in optomechanics , 2013, 1304.0389.

[70]  K. Hakuta,et al.  Nonlinear optical generation using electromagnetically induced transparency in atomic hydrogen. , 1993 .

[71]  M. Aspelmeyer,et al.  Observation of strong coupling between a micromechanical resonator and an optical cavity field , 2009, Nature.

[72]  F. Saif,et al.  Adiabatic Population Transfer Based on a Double Stimulated Raman Adiabatic Passage , 2014 .

[73]  M. Inoue,et al.  Fano resonance between Mie and Bragg scattering in photonic crystals. , 2009, Physical review letters.

[74]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[75]  Franco Nori,et al.  Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system , 2014, 1402.2764.

[76]  C. Keitel,et al.  Lorentz Meets Fano in Spectral Line Shapes: A Universal Phase and Its Laser Control , 2013, Science.

[77]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[78]  Edward S. Fry,et al.  ULTRASLOW GROUP VELOCITY AND ENHANCED NONLINEAR OPTICAL EFFECTS IN A COHERENTLY DRIVEN HOT ATOMIC GAS , 1999, quant-ph/9904031.

[79]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[80]  F. Brennecke,et al.  Cavity Optomechanics with a Bose-Einstein Condensate , 2008, Science.

[81]  M. Ayub,et al.  Exponential localization of moving end mirror in optomechanics , 2014, 1406.1479.

[82]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[83]  Weiqiang Ding,et al.  Ultrahigh-contrast-ratio silicon Fano diode , 2012 .

[84]  Chien-Liang Chen,et al.  Quantum interference and sharp spin polarization on a double quantum dot: Role of the Rashba spin-orbit interaction , 2013 .

[85]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[86]  Farhan Saif,et al.  Engineering maximally entangled N-photon NOON field states using an atom interferometer based on Bragg regime cavity QED , 2007 .

[87]  Harris,et al.  Nonlinear optical processes using electromagnetically induced transparency. , 1990, Physical review letters.

[88]  J. Reno,et al.  Talking through the continuum: New manifestations of Fano‐resonance phenomenology realized with mesoscopic nanostructures , 2012 .