Scale‐Dependent Kurtosis of Magnetic Field Fluctuations in the Solar Wind: A Multi‐Scale Study With Cluster 2003–2015

During the lifetime of the Cluster mission, the inter‐spacecraft distances in the solar wind have changed from the large, fluid, scales (∼104 km), down to the scales of protons (∼102 km). As part of the guest investigator campaign, the mission achieved a formation where a pair of spacecraft were separated by ∼7 km. The small distances and the exceptional sensitivity of the search coil magnetometer provide an excellent data set for studying solar wind turbulence at electron scales. In this study, we investigate the intermittency of the magnetic field fluctuations in the slow solar wind. Using 20 time intervals with different constellation orientations of Cluster we cover spatial scales between 7 and 104 km. We compare time‐lagged increments from a single spacecraft with spatially lagged increments using multiple spacecraft. As the turbulent cascade proceeds to smaller scales in the inertial range, the deviation from Gaussian statistics is observed to increase in both temporal and spatial increments in the components transverse to the mean field direction. At ion scales, there is a maximum of kurtosis, and at sub‐ion scales, the fluctuations are only weakly non‐Gaussian. In the compressive component the deviation from Gaussian statistics is variable: it may increase throughout the inertial and sub‐ion ranges, but also, it may have a maximum at magnetohydrodynamic scales associated with large scale magnetic holes. The observations show differences in kurtosis of time and space increments when the spacecraft pairs are transverse to the flow, indicating its spatial anisotropy.

[1]  L. Yu,et al.  Three-Dimensional Anisotropy and Scaling Properties of Solar Wind Turbulence at Kinetic Scales in the Inner Heliosphere: Parker Solar Probe Observations , 2022, The Astrophysical Journal Letters.

[2]  L. Sorriso-Valvo,et al.  A Possible Link between Turbulence and Plasma Heating , 2021, The Astrophysical Journal.

[3]  Y. Shprits,et al.  Spectrum of kinetic plasma turbulence at 0.3-0.9 astronomical units from the Sun. , 2021, Physical review. E.

[4]  D. Plettemeier,et al.  Statistical study of electron density turbulence and ion-cyclotron waves in the inner heliosphere: Solar Orbiter observations , 2021, Astronomy & Astrophysics.

[5]  Lei Yu,et al.  Multi‐Spacecraft Measurement of Anisotropic Spatial Correlation Functions at Kinetic Range in the Magnetosheath Turbulence , 2021, Journal of Geophysical Research: Space Physics.

[6]  L. Sorriso-Valvo,et al.  Comparing turbulence in a Kelvin–Helmholtz instability region across the terrestrial magnetopause , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  A. Milillo,et al.  Multiscale Features of the Near-Hermean Environment as Derived Through the Hilbert-Huang Transform , 2021, Frontiers in Physics.

[8]  E. Teodorescu,et al.  A Perspective on the Scaling of Magnetosheath Turbulence and Effects of Bow Shock Properties , 2021 .

[9]  W. Matthaeus,et al.  Subproton-scale Intermittency in Near-Sun Solar Wind Turbulence Observed by the Parker Solar Probe , 2021, The Astrophysical Journal Letters.

[10]  N. Raouafi,et al.  Kinetic‐Scale Turbulence in the Venusian Magnetosheath , 2020, Geophysical Research Letters.

[11]  S. Poedts,et al.  A Case for Electron-Astrophysics , 2019, Experimental Astronomy.

[12]  C. Russell,et al.  Scaling and Anisotropy of Solar Wind Turbulence at Kinetic Scales during the MMS Turbulence Campaign , 2020, The Astrophysical Journal.

[13]  Z. Voros,et al.  Higher-Order Statistics in Compressive Solar Wind Plasma Turbulence: High-Resolution Density Observations From the Magnetospheric MultiScale Mission , 2020, Frontiers in Physics.

[14]  R. Nakamura,et al.  Possible coexistence of kinetic Alfvén and ion Bernstein modes in sub-ion scale compressive turbulence in the solar wind , 2020, Physical Review Research.

[15]  L. Franci,et al.  Magnetic Field Turbulence in the Solar Wind at Sub‐ion Scales: In Situ Observations and Numerical Simulations , 2020, Frontiers in Astronomy and Space Sciences.

[16]  M. Maksimović,et al.  Whistler Waves and Electron Properties in the Inner Heliosphere: Helios Observations , 2020, The Astrophysical Journal.

[17]  M. Volwerk,et al.  Statistical study of linear magnetic hole structures near Earth , 2020, Annales Geophysicae.

[18]  M. Belić,et al.  Fluid Theory of Coherent Magnetic Vortices in High-β Space Plasmas , 2020, The Astrophysical Journal.

[19]  M. Dunlop,et al.  Observational Quantification of Three-dimensional Anisotropies and Scalings of Space Plasma Turbulence at Kinetic Scales , 2020, The Astrophysical Journal.

[20]  W. Matthaeus,et al.  Critical Balance and the Physics of Magnetohydrodynamic Turbulence , 2020, The Astrophysical Journal.

[21]  Yongcun Zhang,et al.  AME: A Cross-Scale Constellation of CubeSats to Explore Magnetic Reconnection in the Solar–Terrestrial Relation , 2020, Frontiers in Physics.

[22]  Y. Shprits,et al.  Kinetic turbulence in space plasmas observed in the near-Earth and near-Sun solar wind , 2020, 2004.01102.

[23]  L. Hadid,et al.  Magnetohydrodynamic and kinetic scale turbulence in the near-Earth space plasmas: a (short) biased review , 2020, Reviews of Modern Plasma Physics.

[24]  T. Karlsson,et al.  Current Sheet Statistics in the Magnetosheath , 2020, Frontiers in Astronomy and Space Sciences.

[25]  R. Livi,et al.  The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during PSP Encounter 2 , 2020, The Astrophysical Journal Supplement Series.

[26]  S. Bale,et al.  A Merged Search‐Coil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS , 2020, Journal of Geophysical Research: Space Physics.

[27]  M. Palmroth,et al.  First Observations of the Disruption of the Earth's Foreshock Wave Field During Magnetic Clouds , 2019, Geophysical Research Letters.

[28]  C. Norgren,et al.  Collisionless Magnetic Reconnection and Waves: Progress Review , 2019, Front. Astron. Space Sci..

[29]  L. Franci,et al.  Kinetic Plasma Turbulence: Recent Insights and Open Questions From 3D3V Simulations , 2019, Front. Astron. Space Sci..

[30]  D. Heyner,et al.  On the magnetic characteristics of magnetic holes in the solar wind between Mercury and Earth , 2019, Annales Geophysicae.

[31]  R. Bruno Intermittency in Solar Wind Turbulence From Fluid to Kinetic Scales , 2019, Earth and Space Science.

[32]  L. Franci,et al.  Spectral anisotropies and intermittency of plasma turbulence at ion kinetic scales. , 2019, 1904.03903.

[33]  Jungyeon Cho A Technique for Removing Large-scale Variations in Regularly and Irregularly Spaced Data , 2019, The Astrophysical Journal.

[34]  P. Dmitruk,et al.  [Plasma 2020 Decadal] The essential role of multi-point measurements in turbulence investigations: the solar wind beyond single scale and beyond the Taylor Hypothesis , 2019, 1903.06890.

[35]  O. Le Contel,et al.  [Plasma 2020 Decadal] Multipoint Measurements of the Solar Wind: A Proposed Advance for Studying Magnetized Turbulence , 2019, 1903.05740.

[36]  M. Maksimović,et al.  Inherentness of Non-stationarity in Solar Wind , 2019, The Astrophysical Journal.

[37]  C. Russell,et al.  Magnetospheric Multiscale Observation of Kinetic Signatures in the Alfvén Vortex , 2019, The Astrophysical Journal.

[38]  K. Klein,et al.  The multi-scale nature of the solar wind , 2018, Living Reviews in Solar Physics.

[39]  S. Bale,et al.  Interplay between intermittency and dissipation in collisionless plasma turbulence , 2018, Journal of Plasma Physics.

[40]  L. Matteini,et al.  On slow solar wind with high Alfvénicity: from composition and microphysics to spectral properties , 2018, Monthly Notices of the Royal Astronomical Society.

[41]  C. Russell,et al.  The Fluxgate-Searchcoil Merged (FSM) Magnetic Field Data Product for MMS , 2018, 1809.07388.

[42]  C. Russell,et al.  Solar Wind Turbulence Studies Using MMS Fast Plasma Investigation Data , 2018, The Astrophysical Journal.

[43]  C. Russell,et al.  Higher‐Order Turbulence Statistics in the Earth's Magnetosheath and the Solar Wind Using Magnetospheric Multiscale Observations , 2018, Journal of Geophysical Research: Space Physics.

[44]  C. Russell,et al.  Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath , 2018, Nature.

[45]  J. Kasper,et al.  Majority of Solar Wind Intervals Support Ion-Driven Instabilities. , 2018, Physical review letters.

[46]  Christopher H. K. Chen,et al.  Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations , 2018, 1804.02169.

[47]  J. Kasper,et al.  Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence , 2018, 1803.00065.

[48]  F. Carbone,et al.  On the Statistical Properties of Turbulent Energy Transfer Rate in the Inner Heliosphere , 2017, Solar Physics.

[49]  M. Maksimović,et al.  Coherent Structures at Ion Scales in Fast Solar Wind: Cluster Observations , 2017, 1709.09644.

[50]  W. Matthaeus,et al.  High-resolution Statistics of Solar Wind Turbulence at Kinetic Scales Using the Magnetospheric Multiscale Mission , 2017 .

[51]  F. Jenko,et al.  Magnetic Reconnection as a Driver for a Sub-ion-scale Cascade in Plasma Turbulence , 2017, 1707.06548.

[52]  A. Vaivads,et al.  Numerical Study on the Validity of the Taylor Hypothesis in Space Plasmas , 2017 .

[53]  C. Escoubet,et al.  Variability of the Magnetic Field Power Spectrum in the Solar Wind at Electron Scales , 2017, 1710.05089.

[54]  L. Matteini,et al.  Anisotropies of the Magnetic Field Fluctuations at Kinetic Scales in the Solar Wind: Cluster Observations , 2017, 1710.02341.

[55]  F. Carbone,et al.  Multifractal analysis of high resolution solar wind proton density measurements , 2017 .

[56]  C. Russell,et al.  Electron Heating at Kinetic Scales in Magnetosheath Turbulence , 2017 .

[57]  A. Schreiner,et al.  A Model for Dissipation of Solar Wind Magnetic Turbulence by Kinetic Alfvén Waves at Electron Scales: Comparison with Observations , 2017, 1701.00680.

[58]  A. Schekochihin,et al.  Disruption of sheet-like structures in Alfvénic turbulence by magnetic reconnection , 2016, 1612.07604.

[59]  G. Hospodarsky Spaced‐based search coil magnetometers , 2016 .

[60]  Gernot Kubin,et al.  Optimized Merging of Search Coil and Fluxgate Data for MMS , 2016 .

[61]  C. Norgren,et al.  Turbulence Heating ObserveR – satellite mission proposal , 2016, Journal of Plasma Physics.

[62]  R. Nakamura,et al.  Two interacting X lines in magnetotail: Evolution of collision between the counterstreaming jets , 2016 .

[63]  C. Russell,et al.  Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath , 2016, 1706.04053.

[64]  M. Maksimović,et al.  COMPRESSIVE COHERENT STRUCTURES AT ION SCALES IN THE SLOW SOLAR WIND , 2016, 1604.07577.

[65]  G. Consolini,et al.  TURBULENCE-GENERATED PROTON-SCALE STRUCTURES IN THE TERRESTRIAL MAGNETOSHEATH , 2016, 1603.00328.

[66]  O. Alexandrova,et al.  Observation of an MHD Alfvén vortex in the slow solar wind , 2016, 1602.07410.

[67]  O. Alexandrova,et al.  COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE , 2016, 1602.07213.

[68]  J. Borovsky,et al.  Exploring the effect of current sheet thickness on the high‐frequency Fourier spectrum breakpoint of the solar wind , 2015 .

[69]  P. Canu,et al.  NATURE OF THE MHD AND KINETIC SCALE TURBULENCE IN THE MAGNETOSHEATH OF SATURN: CASSINI OBSERVATIONS , 2015, 1611.08245.

[70]  D. Schaffner,et al.  MULTIFRACTAL AND MONOFRACTAL SCALING IN A LABORATORY MAGNETOHYDRODYNAMIC TURBULENCE EXPERIMENT , 2015 .

[71]  M. Maksimović,et al.  Theory of coherent electron-scale magnetic structures in space plasma turbulence , 2015 .

[72]  W. Matthaeus,et al.  Anisotropy in solar wind plasma turbulence , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[73]  Minping Wan,et al.  Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[74]  Sandra C. Chapman,et al.  Dissipation and heating in solar wind turbulence: from the macro to the micro and back again , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[75]  Chengcheng Tao,et al.  Properties of Jupiter's magnetospheric turbulence observed by the Galileo spacecraft , 2015 .

[76]  L. Sorriso-Valvo,et al.  Multipoint observation of anisotropy and intermittency in solar-wind turbulence , 2014 .

[77]  T. Sundberg,et al.  Electron vortex magnetic holes: A nonlinear coherent plasma structure , 2014, 1412.5928.

[78]  S. Boldyrev,et al.  Ion-scale spectral break of solar wind turbulence at high and low beta , 2014, Geophysical research letters.

[79]  M. Maksimović,et al.  WHISTLER MODE WAVES AND THE ELECTRON HEAT FLUX IN THE SOLAR WIND: CLUSTER OBSERVATIONS , 2014, 1410.6187.

[80]  G. Howes,et al.  THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE , 2014, 1406.5470.

[81]  L. Sorriso-Valvo,et al.  INTERMITTENCY OF SOLAR WIND DENSITY FLUCTUATIONS FROM ION TO ELECTRON SCALES , 2014, 1405.7189.

[82]  G. Howes,et al.  VALIDITY OF THE TAYLOR HYPOTHESIS FOR LINEAR KINETIC WAVES IN THE WEAKLY COLLISIONAL SOLAR WIND , 2014, 1405.5460.

[83]  L. Sorriso-Valvo,et al.  RADIAL EVOLUTION OF THE INTERMITTENCY OF DENSITY FLUCTUATIONS IN THE FAST SOLAR WIND , 2014, 1411.3473.

[84]  L. Trenchi,et al.  RADIAL DEPENDENCE OF THE FREQUENCY BREAK BETWEEN FLUID AND KINETIC SCALES IN THE SOLAR WIND FLUCTUATIONS , 2014, 1404.2191.

[85]  J. Saur,et al.  Turbulent magnetic field fluctuations in Saturn's magnetosphere , 2014 .

[86]  A. Schekochihin,et al.  INTERMITTENCY AND ALIGNMENT IN STRONG RMHD TURBULENCE , 2014, 1403.6354.

[87]  Michael A. Balikhin,et al.  Enhanced timing accuracy for Cluster data , 2013 .

[88]  Nicole Cornilleau-Wehrlin,et al.  CLUSTER-STAFF search coil magnetometer calibration - comparisons with FGM , 2013 .

[89]  S. Bale,et al.  Comment on "Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale". , 2013, Physical review letters.

[90]  T. Horbury,et al.  Solar Wind Turbulence and the Role of Ion Instabilities , 2013, 1306.5336.

[91]  I. Furno,et al.  Methods for Characterising Microphysical Processes in Plasmas , 2013, 1306.5303.

[92]  M. Goldstein,et al.  SCALING OF THE ELECTRON DISSIPATION RANGE OF SOLAR WIND TURBULENCE , 2013, 1303.7394.

[93]  B. Li,et al.  KINETIC PLASMA TURBULENCE IN THE FAST SOLAR WIND MEASURED BY CLUSTER , 2013, 1303.5129.

[94]  H. Karimabadi,et al.  INTERMITTENT HEATING IN SOLAR WIND AND KINETIC SIMULATIONS , 2013 .

[95]  A. Vecchio,et al.  Phase-synchronization, energy cascade, and intermittency in solar-wind turbulence. , 2012, Physical review letters.

[96]  Olga Alexandrova,et al.  SOLAR WIND TURBULENT SPECTRUM AT PLASMA KINETIC SCALES , 2012, 1212.0412.

[97]  F. Sahraoui,et al.  Detection of small-scale structures in the dissipation regime of solar-wind turbulence. , 2012, Physical review letters.

[98]  G. Howes,et al.  INTERPRETING MAGNETIC VARIANCE ANISOTROPY MEASUREMENTS IN THE SOLAR WIND , 2012, 1205.0749.

[99]  T. Horbury,et al.  THREE-DIMENSIONAL STRUCTURE OF SOLAR WIND TURBULENCE , 2011, 1109.2558.

[100]  Y. Khotyaintsev,et al.  ENHANCED MAGNETIC COMPRESSIBILITY AND ISOTROPIC SCALE INVARIANCE AT SUB-ION LARMOR SCALES IN SOLAR WIND TURBULENCE , 2010, 1008.0525.

[101]  V. Carbone,et al.  Observation of the multifractal spectrum at the termination shock by Voyager 1 , 2011 .

[102]  J. Souček,et al.  Cluster observations of trapped ions interacting with magnetosheath mirror modes , 2011 .

[103]  Jiansen He,et al.  POSSIBLE EVIDENCE OF ALFVÉN-CYCLOTRON WAVES IN THE ANGLE DISTRIBUTION OF MAGNETIC HELICITY OF SOLAR WIND TURBULENCE , 2011 .

[104]  U. Motschmann,et al.  Dispersion relation analysis of solar wind turbulence , 2011 .

[105]  W. Matthaeus,et al.  EVIDENCE FOR INHOMOGENEOUS HEATING IN THE SOLAR WIND , 2010 .

[106]  P. Canu,et al.  Three dimensional anisotropic κ spectra of turbulence at subproton scales in the solar wind. , 2010, Physical review letters.

[107]  Y. X. Huang,et al.  Second-order structure function in fully developed turbulence. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  L. Sorriso-Valvo,et al.  On the scaling properties of anisotropy of interplanetary magnetic turbulent fluctuations , 2010 .

[109]  T. Horbury,et al.  Anisotropy of solar wind turbulence between ion and electron scales. , 2010, Physical review letters.

[110]  T. Horbury,et al.  INTERPRETING POWER ANISOTROPY MEASUREMENTS IN PLASMA TURBULENCE , 2009, 0909.2683.

[111]  C. Escoubet,et al.  Cluster Active Archive: Overview , 2010 .

[112]  S. Schwartz,et al.  Solar wind turbulent spectrum from MHD to electron scales , 2009, 0912.2668.

[113]  S. Bale,et al.  SOLAR WIND MAGNETOHYDRODYNAMICS TURBULENCE: ANOMALOUS SCALING AND ROLE OF INTERMITTENCY , 2009 .

[114]  S. Schwartz,et al.  Universality of solar-wind turbulent spectrum from MHD to electron scales. , 2009, Physical review letters.

[115]  S C Chapman,et al.  Global scale-invariant dissipation in collisionless plasma turbulence. , 2009, Physical review letters.

[116]  Vincent Génot,et al.  Mirror structures above and below the linear instability threshold: Cluster observations, fluid model and hybrid simulations , 2009 .

[117]  L. Sorriso-Valvo,et al.  Magnetic turbulence in space plasmas: Scale‐dependent effects of anisotropy , 2009 .

[118]  V. Génot Mirror and Firehose Instabilities in the Heliosheath , 2008 .

[119]  A. Mangeney,et al.  Spectra and anisotropy of magnetic fluctuations in the Earth's magnetosheath: Cluster observations , 2008, 0810.0675.

[120]  P. Hellinger,et al.  Oblique proton fire hose instability in the expanding solar wind: Hybrid simulations: FIRE HOSE , 2008 .

[121]  J. Saur,et al.  Alfvén vortices in Saturn's magnetosheath: Cassini observations , 2008 .

[122]  Sean Oughton,et al.  Anisotropic scaling of magnetohydrodynamic turbulence. , 2008, Physical review letters.

[123]  S. Chapman,et al.  Solar cycle dependence of scaling in solar wind fluctuations , 2008 .

[124]  J. Souček,et al.  Properties of magnetosheath mirror modes observed by Cluster and their response to changes in plasma parameters , 2008 .

[125]  O. Alexandrova Solar wind vs magnetosheath turbulence and Alfvén vortices , 2008 .

[126]  W. Macek Nonlinear Processes in Geophysics Multifractality and intermittency in the solar wind , 2007 .

[127]  M. Maksimović,et al.  Cluster observations in the magnetosheath – Part 1: Anisotropies of the wave vector distribution of the turbulence at electron scales , 2006 .

[128]  M. Maksimović,et al.  Alfvén vortex filaments observed in magnetosheath downstream of a quasi‐perpendicular bow shock , 2006 .

[129]  S. Chapman,et al.  Extracting the scaling exponents of a self-affine, non-Gaussian process from a finite-length time series. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[130]  L. Sorriso-Valvo,et al.  Persistence of small-scale anisotropy of magnetic turbulence as observed in the solar wind , 2006, physics/0607128.

[131]  A. Lazarus,et al.  Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations , 2006 .

[132]  S. Boldyrev On the Spectrum of Magnetohydrodynamic Turbulence , 2005, Physical review letters.

[133]  T. Horbury,et al.  Spacecraft observations of solar wind turbulence: an overview , 2005 .

[134]  Vincenzo Carbone,et al.  The Solar Wind as a Turbulence Laboratory , 2005 .

[135]  N. Watkins,et al.  Scaling collapse and structure functions: identifying self-affinity in finite length time series , 2005, physics/0504024.

[136]  J. King,et al.  Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data , 2005 .

[137]  O. Alexandrova Turbulence MHD dans la magnétogaine terrestre en aval des chocs quasi-perpendiculaires , 2005 .

[138]  L. Sorriso-Valvo,et al.  On the probability distribution function of small-scale interplanetary magnetic field fluctuations , 2004, physics/0409056.

[139]  Olga Alexandrova,et al.  Cluster observations of finite amplitude Alfven waves and small-scale magnetic filaments downstream of a quasi-perpendicular shock , 2004 .

[140]  T. Dudok de Wit Can high-order moments be meaningfully estimated from experimental turbulence measurements? , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[141]  T. Hada,et al.  Phase coherence of foreshock MHD waves: wavelet analysis , 2003 .

[142]  T. Hada,et al.  Phase coherence of MHD waves in the solar wind , 2003 .

[143]  L. Sorriso-Valvo,et al.  Radial evolution of solar wind intermittency in the inner heliosphere , 2003, astro-ph/0303578.

[144]  Ondrej Santolik,et al.  First results obtained by the Cluster STAFF experiment , 2003 .

[145]  M. W. Dunlop,et al.  The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results , 2001 .

[146]  I. Papamastorakis,et al.  First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment , 2001 .

[147]  M. Fehringer,et al.  Introduction The Cluster mission , 2001 .

[148]  J. Saur,et al.  Geometry of low-frequency solar wind magnetic turbulence : Evidence for radially aligned Alfvénic fluctuations , 1999 .

[149]  L. Sorriso-Valvo,et al.  Intermittency in the solar wind turbulence through probability distribution functions of fluctuations , 1999, physics/9903043.

[150]  P. Veltri MHD turbulence in the solar wind: self-similarity, intermittency and coherent structures , 1999 .

[151]  Pierluigi Veltri MHD turbulence in the solar wind: self-similarity, intermittency and coherent structures , 1999 .

[152]  H. K. Wong,et al.  Observational constraints on the dynamics of the interplanetary magnetic field dissipation range , 1998 .

[153]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[154]  Manuel Grande,et al.  PEACE: A PLASMA ELECTRON AND CURRENT EXPERIMENT , 1997 .

[155]  J. Rouzaud,et al.  THE CLUSTER ION SPECTROMETRY (CIS) EXPERIMENT , 1997 .

[156]  C. P. Escoubet,et al.  CLUSTER – SCIENCE AND MISSION OVERVIEW , 1997 .

[157]  J. M. Nappa,et al.  The Cluster Spatio-Temporal Analysis of Field Fluctuations (STAFF) Experiment , 1997 .

[158]  W. Matthaeus,et al.  Dominant two‐dimensional solar wind turbulence with implications for cosmic ray transport , 1996 .

[159]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[160]  P. Abry,et al.  Wavelets, spectrum analysis and 1/ f processes , 1995 .

[161]  W. Matthaeus,et al.  Long-term variations of interplanetary magnetic field spectra with implications for cosmic ray modulation , 1993 .

[162]  H. Tennekes,et al.  The intermittent small-scale structure of turbulence: data-processing hazards , 1972, Journal of Fluid Mechanics.

[163]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.