Nonparametric estimation of an extreme-value copula in arbitrary dimensions

Inference on an extreme-value copula usually proceeds via its Pickands dependence function, which is a convex function on the unit simplex satisfying certain inequality constraints. In the setting of an i.i.d. random sample from a multivariate distribution with known margins and an unknown extreme-value copula, an extension of the Caperaa-Fougeres-Genest estimator was introduced by D. Zhang, M. T. Wells and L. Peng [Nonparametric estimation of the dependence function for a multivariate extreme-value distribution, Journal of Multivariate Analysis 99 (4) (2008) 577-588]. The joint asymptotic distribution of the estimator as a random function on the simplex was not provided. Moreover, implementation of the estimator requires the choice of a number of weight functions on the simplex, the issue of their optimal selection being left unresolved. A new, simplified representation of the CFG-estimator combined with standard empirical process theory provides the means to uncover its asymptotic distribution in the space of continuous, real-valued functions on the simplex. Moreover, the ordinary least-squares estimator of the intercept in a certain linear regression model provides an adaptive version of the CFG-estimator whose asymptotic behavior is the same as if the variance-minimizing weight functions were used. As illustrated in a simulation study, the gain in efficiency can be quite sizable.

[1]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[2]  Anne-Laure Fougères,et al.  Estimation of a Bivariate Extreme Value Distribution , 2000 .

[3]  J. Tawn Modelling multivariate extreme value distributions , 1990 .

[4]  H. Joe Multivariate extreme value distributions , 1997 .

[5]  Projection estimators of Pickands dependence functions , 2008 .

[6]  Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution , 2009 .

[7]  Nonparametric Estimation of the Dependence Function in Bivariate Extreme Value Distributions , 2001 .

[8]  Christian Genest,et al.  A nonparametric estimation procedure for bivariate extreme value copulas , 1997 .

[9]  Rick Durrett,et al.  Random Graph Dynamics (Cambridge Series in Statistical and Probabilistic Mathematics) , 2006 .

[10]  Paul Deheuvels,et al.  On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions , 1991 .

[11]  A. Stephenson Simulating Multivariate Extreme Value Distributions of Logistic Type , 2003 .

[12]  Simon Guillotte,et al.  A bayesian estimator for the dependence function of a bivariate extreme‐value distribution , 2008 .

[13]  J. Segers,et al.  RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS , 2007, 0707.4098.

[14]  J. Tiago de Oliveira,et al.  Statistical Extremes and Applications , 1984 .

[15]  J. Segers Non-Parametric Inference for Bivariate Extreme-Value Copulas , 2004 .

[16]  Probabilistic Aspects of Multivariate Extremes , 1984 .

[17]  Rolf-Dieter Reiss,et al.  On Pickands coordinates in arbitrary dimensions , 2005 .

[18]  Liang Peng,et al.  Nonparametric estimation of the dependence function for a multivariate extreme value distribution , 2008 .

[19]  P. Hall,et al.  Distribution and dependence-function estimation for bivariate extreme-value distributions , 2000 .

[20]  A. Obretenov On the dependence function of Sibuya in multivariate extreme value theory , 1991 .