Predictive habitat distribution models in ecology

With the rise of new powerful statistical techniques and GIS tools, the development of predictive habitat distribution models has rapidly increased in ecology. Such models are static and probabilistic in nature, since they statistically relate the geographical distribution of species or communities to their present environment. A wide array of models has been developed to cover aspects as diverse as biogeography, conservation biology, climate change research, and habitat or species management. In this paper, we present a review of predictive habitat distribution modeling. The variety of statistical techniques used is growing. Ordinary multiple regression and its generalized form (GLM) are very popular and are often used for modeling species distributions. Other methods include neural networks, ordination and classification methods, Bayesian models, locally weighted approaches (e.g. GAM), environmental envelopes or even combinations of these models. The selection of an appropriate method should not depend solely on statistical considerations. Some models are better suited to reflect theoretical findings on the shape and nature of the species’ response (or realized niche). Conceptual considerations include e.g. the trade-off between optimizing accuracy versus optimizing generality. In the field of static distribution modeling, the latter is mostly related to selecting appropriate predictor variables and to designing an appropriate procedure for model selection. New methods, including threshold-independent measures (e.g. receiver operating characteristic (ROC)-plots) and resampling techniques (e.g. bootstrap, cross-validation) have been introduced in ecology for testing the accuracy of predictive models. The choice of an evaluation measure should be driven primarily by the goals of the study. This may possibly lead to the attribution of different weights to the various types of prediction errors (e.g. omission, commission or confusion). Testing the model in a wider range of situations (in space and time) will permit one to define the range of applications for which the model predictions are suitable. In turn, the qualification of the model depends primarily on the goals of the study that define the qualification criteria and on the usability of the model, rather than on statistics alone. © 2000 Elsevier Science B.V. All rights reserved.

[1]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[2]  T. O. Nelson,et al.  Measuring ordinal association in situations that contain tied scores. , 1996, Psychological bulletin.

[3]  P. Hogeweg Cellular automata as a paradigm for ecological modeling , 1988 .

[4]  Jon Atli Benediktsson,et al.  Classification Of Very High Dimensional Data Using Neural Networks , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[5]  J. Gower A General Coefficient of Similarity and Some of Its Properties , 1971 .

[6]  N. Nagelkerke,et al.  A note on a general definition of the coefficient of determination , 1991 .

[7]  Edward J. Rykiel,et al.  10 – Modelling Integrated Response of Plants to Multiple Stresses , 1991 .

[8]  H. Jones,et al.  Plants and Microclimate. , 1985 .

[9]  Ross B. Cunningham,et al.  Altitudinal distribution of several eucalypt species in relation to other environmental factors in southern New South Wales , 1983 .

[10]  M. A. Leibold The Niche Concept Revisited: Mechanistic Models and Community Context , 1995 .

[11]  Harry John Betteley Birks,et al.  Quaternary palaeoecology and vegetation science— current contributions and possible future developments , 1993 .

[12]  H. Gleason The individualistic concept of the plant association , 1926 .

[13]  Elgene O. Box,et al.  Tasks for Vegetation Science I: Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography , 2011 .

[14]  R. W. Fitzgerald,et al.  Assessing the classification accuracy of multisource remote sensing data , 1994 .

[15]  David R. Breininger,et al.  Mapping Florida Scrub Jay habitat for purposes of land-use management , 1991 .

[16]  Cort J. Willmott,et al.  Spatial statistics and models , 1984 .

[17]  Kun-Shan Chen,et al.  Classification of multispectral imagery using dynamic learning neural network , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[18]  Andrew K. Skidmore,et al.  Classification of Kangaroo Habitat Distribution Using Three GIS Models , 1996, Int. J. Geogr. Inf. Sci..

[19]  J. Wiens Spatial Scaling in Ecology , 1989 .

[20]  G. C. Stevens,et al.  Spatial Variation in Abundance , 1995 .

[21]  Eric Duffey Vegetation ecology of central Europe: Fourth Edition. By Heinz Ellenberg, translated by Gordon K. Strutt. Cambridge University Press, Cambridge. 1988. 731 pp. ISBN 0 521 23642 8. Price: £75·00, $125·00 , 1990 .

[22]  M. Hill,et al.  Reciprocal Averaging : an eigenvector method of ordination , 1973 .

[23]  Martin F. Price,et al.  Mountain Environments and Geographic Information Systems , 1995 .

[24]  Peter M. Atkinson Optimal sampling strategies for raster-based geographical information systems , 1996 .

[25]  Stanley Adair Cain Foundations of plant geography , 1944 .

[26]  Thomas A. Spies,et al.  REGIONAL GRADIENT ANALYSIS AND SPATIAL PATTERN OF WOODY PLANT COMMUNITIES OF OREGON FORESTS , 1998 .

[27]  Philippe Lagacherie,et al.  Addressing Geographical Data Errors in a Classification Tree for Soil Unit Prediction , 1997, Int. J. Geogr. Inf. Sci..

[28]  R. K. Dixon,et al.  Process modeling of forest growth responses to environmental stress , 1991 .

[29]  H. Olff,et al.  A hierarchical set of models for species response analysis , 1993 .

[30]  T. Webb,,et al.  The Past 11,000 Years of Vegetational Change in Eastern North America , 1981 .

[31]  S. le Cessie,et al.  Predictive value of statistical models. , 1990, Statistics in medicine.

[32]  C. Stern CONCLUDING REMARKS OF THE CHAIRMAN , 1950 .

[33]  Thomas M. Smith,et al.  Spatial applications of gap models , 1991 .

[34]  S. Jørgensen,et al.  Movement rules for individual-based models of stream fish , 1999 .

[35]  S. Lek,et al.  Environmental impact prediction using neural network modelling. An example in wildlife damage , 1999 .

[36]  S. Wright Evolution and the Genetics of Populations, Volume 3: Experimental Results and Evolutionary Deductions , 1977 .

[37]  J. Calvo,et al.  On the use of three performance measures for fitting species response curves , 1995 .

[38]  Michael Gottfried,et al.  Prediction of Vegetation Patterns at the Limits of Plant Life: A New View of the Alpine-Nival Ecotone , 1998 .

[39]  C. Margules,et al.  Biological Models for Monitoring Species Decline: The Construction and Use of Data Bases , 1994 .

[40]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[41]  M. Hill,et al.  Data analysis in community and landscape ecology , 1987 .

[42]  A. O. Nicholls,et al.  Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species , 1990 .

[43]  Daniel L. Civco,et al.  Artificial Neural Networks for Land-Cover Classification and Mapping , 1993, Int. J. Geogr. Inf. Sci..

[44]  Victor J. Neldner,et al.  Using geographic information systems (GIS) to determine the adequacy of sampling in vegetation surveys , 1995 .

[45]  David J. Mladenoff,et al.  Predicting gray wolf landscape recolonization: logistic regression models vs. new field data , 1999 .

[46]  M. Goodchild,et al.  Environmental Modeling with GIS , 1994 .

[47]  James M. Lenihan,et al.  Ecological response surfaces for North American boreal tree species and their use in forest classification , 1993 .

[48]  Robert G. Wagner,et al.  Process versus empirical models: which approach for forest ecosystem management? , 1996 .

[49]  Frederic E. Clements,et al.  Nature and Structure of the Climax , 1936 .

[50]  Michael F. Hutchinson,et al.  A new method for estimating the spatial distribution of mean seasonal and annual rainfall applied to the Hunter Valley, New South Wales , 1983 .

[51]  Jari Oksanen,et al.  Maximum likelihood prediction of lake acidity based on sedimented diatoms , 1990 .

[52]  Simon A. Levin,et al.  Niche, Habitat, and Ecotope , 1973, The American Naturalist.

[53]  James S. Clark,et al.  Disturbance and tree life history on the shifting mosaic landscape , 1991 .

[54]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[55]  Philippe Lagacherie Formalisation des lois de distribution des sols pour automatiser la cartographie pédologique à partir d'un secteur pris comme référence : cas de la petite région naturelle Moyenne Vallée de l'Hérault , 1992 .

[56]  T. Yee,et al.  Generalized additive models in plant ecology , 1991 .

[57]  A. O. Nicholls,et al.  Determining species response functions to an environmental gradient by means of a β‐function , 1994 .

[58]  Harry John Betteley Birks,et al.  A comparative ecological study of Norwegian mountain plants in relation to possible future climatic change , 1997 .

[59]  J. Franklin Predicting the distribution of shrub species in southern California from climate and terrain‐derived variables , 1998 .

[60]  M. Austin,et al.  Current problems of environmental gradients and species response curves in relation to continuum theory , 1994 .

[61]  Robert A. Monserud,et al.  A Siberian vegetation model based on climatic parameters , 1994 .

[62]  J. Busby A biogeoclimatic analysis of Nothofagus cunninghamii (Hook.) Oerst. in southeastern Australia , 1986 .

[63]  Hong S. He,et al.  An object-oriented forest landscape model and its representation of tree species , 1999 .

[64]  A. V. Humboldt,et al.  Essai sur la géographie des plantes , 1805 .

[65]  Carole Helman,et al.  Inventory Analysis of Southern New South Wales Rainforest Vegetation , 1985 .

[66]  N. Perrin Contribution à l'écologie du genre Cepaea (Gastropoda) : approche descriptive et expérimentale de l'habitat et de la niche écologique , 1985 .

[67]  R. J. Pool,et al.  Plant Succession. An Analysis of the Development of Vegetation , 1917 .

[68]  Robert M. May,et al.  Theoretical Ecology: Principles and Applications , 1981 .

[69]  J. Michael Scott,et al.  Predicting Species Occurrences: Issues of Accuracy and Scale , 2002 .

[70]  S. T. Buckland,et al.  An autologistic model for the spatial distribution of wildlife , 1996 .

[71]  H. J. B. Birks,et al.  Statistical approaches to interpreting diversity patterns in the Norwegian mountain flora , 1996 .

[72]  J. Franklin Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients , 1995 .

[73]  Paul G. Risser,et al.  Global warming and biological diversity , 1992 .

[74]  George F. Hepner,et al.  Artificial neural network classification using a minimal training set - Comparison to conventional supervised classification , 1990 .

[75]  Marc Dufrêne,et al.  Geographic Structure and Potential Ecological Factors in Belgium , 1991 .

[76]  P. Carey,et al.  The Use of GIS to Identify Sites that will become Suitable for a Rare Orchid, Himantoglossum hircinum L., in a Future Changed Climate , 1994 .

[77]  R. Whittaker,et al.  GRADIENT ANALYSIS OF VEGETATION* , 1967, Biological reviews of the Cambridge Philosophical Society.

[78]  Robert H. Fraser,et al.  Vertebrate species richness at the mesoscale: relative roles of energy and heterogeneity , 1998 .

[79]  George P. Malanson,et al.  Simulated responses to hypothetical fundamental niches , 1997 .

[80]  Anders N. Nilsson,et al.  Abundance and species richness patterns of predaceous diving beetles (Coleoptera, Dytiscidae) in Swedish lakes , 1994 .

[81]  Kim Lowell,et al.  Utilizing discriminant function analysis with a geographical information system to model ecological succession spatially , 1991, Int. J. Geogr. Inf. Sci..

[82]  David L. Wood,et al.  Regression methods for spatially correlated data: an example using beetle attacks in a seed orchard , 1997 .

[83]  Christian Wissel,et al.  Aims and limits of ecological modelling exemplified by island theory , 1992 .

[84]  A. K. BREGT,et al.  Determination of rasterizing error a case study with the soil map of The Netherlands , 1991, Int. J. Geogr. Inf. Sci..

[85]  Efraim Halfon The bootstrap and the jackknife in ecotoxicology or nonparametric estimates of standard error , 1985 .

[86]  James G. Owen,et al.  Patterns of Herpetofaunal Species Richness: Relation to Temperature, Precipitation, and Variance in Elevation , 1989 .

[87]  G. Shao,et al.  Climatic controls of eastern North American coastal tree and shrub distributions , 1995 .

[88]  A. O. Nicholls How to make biological surveys go further with generalised linear models , 1989 .

[89]  I. Colin Prentice,et al.  Silvics of north European trees: compilation, comparisons and implications for forest succession modelling. , 1991 .

[90]  o. Prof. em. Dr. h. c. Heinrich Walter,et al.  Vegetation of the Earth and Ecological Systems of the Geobiosphere , 1983, Heidelberg Science Library.

[91]  I. Dimopoulos,et al.  Application of neural networks to modelling nonlinear relationships in ecology , 1996 .

[92]  M. Hill,et al.  Patterns of species distribution in Britain elucidated by canonical correspondence analysis , 1991 .

[93]  Todd Keeler-Wolf,et al.  Stratified Sampling for Field Survey of Environmental Gradients in the Mojave Desert Ecoregion , 2001 .

[94]  N. Zimmermann,et al.  Predictive mapping of alpine grasslands in Switzerland: Species versus community approach , 1999 .

[95]  J. Diamond,et al.  Ecology and Evolution of Communities , 1976, Nature.

[96]  N. Mitchell,et al.  The derivation of climate surfaces for New Zealand, and their application to the bioclimatic analysis of the distribution of kauri (Agathis australis) , 1991 .

[97]  Jari Oksanen,et al.  Why the beta-function cannot be used to estimate skewness of species responses , 1997 .

[98]  A. Martínez-Taberner,et al.  Prediction of potential submerged vegetation in a silted coastal marsh, Albufera of Majorca, Balearic Islands , 1992 .

[99]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[100]  J. Leathwick Are New Zealand's Nothofagus species in equilibrium with their environment? , 1998 .

[101]  Scott L. Collins,et al.  The hierarchical continuum concept , 1993 .

[102]  Ronald P. Neilson,et al.  A rule-based vegetation formation model for Canada , 1993 .

[103]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[104]  Peter Chesson,et al.  A NEW METHOD FOR DETECTING SPECIES ASSOCIATIONS WITH SPATIALLY AUTOCORRELATED DATA , 1998 .

[105]  Donn G. Decoursey Developing Models with More Detail: Do More Algorithms Give More Truth? , 1992 .

[106]  F. Kienast,et al.  Predicting the potential distribution of plant species in an alpine environment , 1998 .

[107]  Kun Shan Chen,et al.  LAND-COVER CLASSIFICATION OF MULTISPECTRAL IMAGERY USING A DYNAMIC LEARNING NEURAL-NETWORK , 1995 .

[108]  Ralph Dubayah,et al.  Topographic Solar Radiation Models for GIS , 1995, Int. J. Geogr. Inf. Sci..

[109]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[110]  W. Cramer,et al.  Special Paper: Modelling Present and Potential Future Ranges of Some European Higher Plants Using Climate Response Surfaces , 1995 .

[111]  T. Dobzhansky,et al.  Evolution and the Genetics of Populations, Vol. 1, Genetic and Biometric Foundations , 1969 .

[112]  J. H. Wright,et al.  Late-Quaternary Environments of the United States , 1983 .

[113]  W. Westman,et al.  MEASURING REALIZED NICHE SPACES: CLIMATIC RESPONSE OF CHAPARRAL AND COASTAL SAGE SCRUB , 1991 .

[114]  W. Cibula,et al.  Use of topographic and climatological models in a geographical data base to improve Landsat MSS classification for Olympic National Park , 1987 .

[115]  R. Leemans,et al.  Comparing global vegetation maps with the Kappa statistic , 1992 .

[116]  Graeme D. Ruxton,et al.  Effects of the spatial and temporal ordering of events on the behaviour of a simple cellular automaton , 1996 .

[117]  P. Walker,et al.  HABITAT : a procedure for modelling a disjoint environmental envelope for a plant or animal species , 1991 .

[118]  Felix Kienast,et al.  Potential impacts of climate change on species richness in mountain forests — an ecological risk assessment , 1998 .

[119]  David A. Elston,et al.  Empirical models for the spatial distribution of wildlife , 1993 .

[120]  Ronald Good The geography of the flowering plants , 1947 .

[121]  F. Harrell,et al.  Prognostic/Clinical Prediction Models: Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors , 2005 .

[122]  G. F. Frazier,et al.  A spatial model for studying the effects of climatic change on the structure of landscapes subject to large disturbances , 1991 .

[123]  Brian Huntley,et al.  Climatic control of the distribution and abundance of beech (Fagus L.) in Europe and North America. , 1989 .

[124]  M. Austin,et al.  Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity , 1996 .

[125]  H. J. B. Birks,et al.  A New Biogeographical Classification of the Scottish Uplands. II. Vegetation--Environment Relationships , 1993 .

[126]  Peter Carey,et al.  DISPERSE: A Cellular Automaton for Predicting the Distribution of Species in a Changed Climate , 1996 .

[127]  A. Skidmore An expert system classifies eucalypt forest types using thematic mapper data and a digital terrain model , 1989 .

[128]  Michel J. Phipps,et al.  From Local to Global: The Lesson of Cellular Automata , 1992 .

[129]  G. White,et al.  Analysis of Frequency Count Data Using the Negative Binomial Distribution , 1996 .

[130]  J. Busby BIOCLIM - a bioclimate analysis and prediction system , 1991 .

[131]  A. J. Bayes,et al.  Algorithms for monotonic functions and their application to ecological studies in vegetation science , 1991 .

[132]  Lalit Kumar,et al.  Modelling Topographic Variation in Solar Radiation in a GIS Environment , 1997, Int. J. Geogr. Inf. Sci..

[133]  Zhenkui Ma,et al.  Tau coefficients for accuracy assessment of classification of remote sensing data , 1995 .

[134]  Marc P. Armstrong,et al.  Landscape fragmentation and dispersal in a model of riparian forest dynamics , 1990 .

[135]  F. Kienast,et al.  A simulated map of the potential natural forest vegetation of Switzerland , 1993 .

[136]  I. R. Noble,et al.  Automatic model simplification: the generation of replacement sequences and their use in vegetation modelling , 1993 .

[137]  H. G. Baker,et al.  Evolution in the Tropics , 1970 .

[138]  R. Neilson A Model for Predicting Continental‐Scale Vegetation Distribution and Water Balance , 1995 .

[139]  H. TUXEN,et al.  Vegetation history , 1988, Handbook of vegetation science.

[140]  R. Haight,et al.  A Regional Landscape Analysis and Prediction of Favorable Gray Wolf Habitat in the Northern Great Lakes Region , 1995 .

[141]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926, Nature.

[142]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[143]  Erik Næsset,et al.  Use of the Weighted Kappa Coefficient in Classification Error Assessment of Thematic Maps , 1996, Int. J. Geogr. Inf. Sci..

[144]  Hong S. He,et al.  SPATIALLY EXPLICIT AND STOCHASTIC SIMULATION OF FOREST- LANDSCAPE FIRE DISTURBANCE AND SUCCESSION , 1999 .

[145]  Matthias M. Boer,et al.  Landscape-ecological impact of climatic change : proceedings of a European conference, Lunteren, the Netherlands, 3-7 December 1989 , 1990 .

[146]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[147]  P. Stott,et al.  Historical plant geography: An introduction , 1981 .

[148]  H. Ellenberg,et al.  Vegetation Ecology of Central Europe. , 1989 .

[149]  R. Alkemade,et al.  Determining alternative models for vegetation response analysis: a non‐parametric approach , 1998 .

[150]  N. Veitch,et al.  Habitat mapping from satellite imagery and wildlife survey data using a Bayesian modeling procedure in a GIS , 1993 .

[151]  Harold A. Mooney,et al.  Responses of Plants to Multiple Stresses , 1993 .

[152]  Felix Kienast,et al.  Modelling potential impacts of climate change on the spatial distribution of zonal forest communities in Switzerland , 1995 .

[153]  M. Austin,et al.  An Ecological Perspective on Biodiversity Investigations: Examples from Australian Eucalypt Forests , 1998 .

[154]  Anthony Lehmann,et al.  A GIS approach of aquatic plant spatial heterogeneity in relation to sediment and depth gradients, Lake Geneva, Switzerland , 1997 .

[155]  W. Cramer,et al.  A global biome model based on plant physiology and dominance, soil properties and climate , 1992 .

[156]  Dawn M. Kaufman,et al.  THE GEOGRAPHIC RANGE: Size, Shape, Boundaries, and Internal Structure , 1996 .

[157]  Stephen J. Walsh,et al.  GIS and remote sensing applications in biogeography and ecology , 2001 .

[158]  Edward J. Rykiel,et al.  Testing ecological models: the meaning of validation , 1996 .

[159]  John K. Horne,et al.  Spatial variance in ecology , 1995 .

[160]  Antoine Guisan,et al.  Vegetation responses to climate change in the Alps: modeling Studies , 1998 .

[161]  Peter E. Thornton,et al.  Generating surfaces of daily meteorological variables over large regions of complex terrain , 1997 .

[162]  Wolfgang Cramer,et al.  Plant functional types and climatic change: Introduction , 1996 .

[163]  T. Frank Mapping dominant vegetation communities in the Colorado Rocky Mountain Front Range with Landsat Thematic Mapper and digital terrain data , 1988 .

[164]  Ronald I. Miller Predicting rare plant distribution patterns in the southern Appalachians of the south-eastern U.S.A. , 1986 .

[165]  John P. Wilson,et al.  Terrain analysis : principles and applications , 2000 .

[166]  Cornelis W. P. M. Blom,et al.  Vegetation zonation in a former tidal area: A vegetation-type response model based on DCA and logistic regression using GIS , 1996 .

[167]  Gerard B. M. Heuvelink,et al.  Propagation of errors in spatial modelling with GIS , 1989, Int. J. Geogr. Inf. Sci..

[168]  Exequiel Ezcurra,et al.  Species richness of Argentine cacti: A test of biogeographic hypotheses , 1996 .

[169]  S. Lek,et al.  The use of artificial neural networks to predict the presence of small‐bodied fish in a river , 1997 .

[170]  Elgene O. Box,et al.  Plant functional types and climate at the global scale , 1996 .

[171]  F. Woodward Climate and plant distribution , 1987 .

[172]  Peter L. Marshall,et al.  Testing the distributional assumptions of least squares linear regression , 1995 .

[173]  Craig Leohle,et al.  Evaluation of theories and calculation tools in ecology , 1983 .

[174]  Otto Wildi,et al.  Simulierte Auswirkungen von postulierten Klimaveränderungen auf die Waldvegetation im Alpenraum , 1997 .

[175]  Antoine Guisan,et al.  Ordinal response regression models in ecology. , 2000 .

[176]  P. Vincent,et al.  Poisson regression models of species abundance , 1983 .

[177]  Luigi Boitani,et al.  A Large‐Scale Model of Wolf Distribution in Italy for Conservation Planning , 1999 .

[178]  Stephen Davis,et al.  Conservation and Management of Rare and Endangered Plants , 1989 .

[179]  Janet Franklin,et al.  Terrain variables used for predictive mapping of vegetation communities in southern California , 2000 .

[180]  George P. Malanson,et al.  Spatial autocorrelation and distributions of plant species on environmental gradients , 1985 .

[181]  C. Heckler Applied Discriminant Analysis , 1995 .

[182]  Mike P. Austin,et al.  Continuum Concept, Ordination Methods, and Niche Theory , 1985 .

[183]  Jacob Cohen,et al.  Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. , 1968 .

[184]  L. Queen,et al.  Crane habitat evaluation using GIS and remote sensing , 1993 .

[185]  George P. Malanson,et al.  Realized versus fundamental niche functions in a model of chaparral response to climatic change , 1992 .

[186]  Brian G. Lees,et al.  Decision-tree and rule-induction approach to integration of remotely sensed and GIS data in mapping vegetation in disturbed or hilly environments , 1991 .

[187]  Jorge Mateu,et al.  Mathematical and statistical formulation of an ecological model with applications , 1997 .

[188]  H. J. B. Birks,et al.  Handbook of holocene palaeoecology and palaeohydrology , 1986 .

[189]  Brendan Mackey,et al.  Predicting the potential distribution of rain‐forest structural characteristics , 1994 .

[190]  R. Tibshirani,et al.  Generalized Additive Models: Some Applications , 1987 .

[191]  Aat Barendregt,et al.  Experimental evaluation of realized niche models for predicting responses of plant species to a change in environmental conditions , 1994 .

[192]  Felix Kienast,et al.  Long-term adaptation potential of Central European mountain forests to climate change: a GIS-assisted sensitivity assessment , 1996 .

[193]  Maureen Caudill,et al.  Neural network training tips and techniques , 1991 .

[194]  Daniel G. Brown Predicting vegetation types at treeline using topography and biophysical disturbance variables , 1994 .

[195]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[196]  Lawrence B. Slobodkin,et al.  A Critique for Ecology , 1991 .

[197]  C. Margules,et al.  Nature Conservation: Cost Effective Biological Surveys and Data Analysis , 1990 .

[198]  Noel A Cressie,et al.  Spatial statistical analysis of environmental and ecological data , 1993 .

[199]  E. Salisbury,et al.  The Geographical Distribution of Plants in Relation to Climatic Factors , 1926 .

[200]  S. Manel,et al.  Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird , 1999 .

[201]  R. P. Leersnijder Pinogram : a pine growth area model , 1992 .

[202]  D. Roberts Landscape vegetation modelling with vital attributes and fuzzy systems theory , 1996 .

[203]  Jacques Hausser Säugetiere der Schweiz / Mammifères de la Suisse / Mammiferi della Svizzera , 1995 .

[204]  P. Legendre,et al.  Partialling out the spatial component of ecological variation , 1992 .

[205]  Noel A Cressie Geostatistics: A tool for environmental modelers , 1993 .

[206]  R. Macarthur Mathematical Ecology and Its Place among the Sciences. (Book Reviews: Geographical Ecology. Patterns in the Distribution of Species) , 1974 .

[207]  Graeme D. Ruxton,et al.  The need for biological realism in the updating of cellular automata models , 1998 .

[208]  R. Levins The strategy of model building in population biology , 1966 .

[209]  B. Lees,et al.  A new method for predicting vegetation distributions using decision tree analysis in a geographic information system , 1991 .

[210]  H. Gleason,et al.  The individualistic concept of the plant association , 1939 .

[211]  J. C. van Houwelingen,et al.  Predictive value of statistical models , 1990 .

[212]  K. R. W. Brewer,et al.  The use of gradient directed transects or gradsects in natural resource surveys , 1985 .

[213]  Antoine Guisan,et al.  Potential ecological impacts of climate change in the Alps and Fennoscandian mountains , 1996 .

[214]  C. Gotway,et al.  Comparison of kriging and inverse-distance methods for mapping soil parameters , 1996 .

[215]  N Oreskes,et al.  Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.

[216]  J. SAMUEL,et al.  SOME PROPERTIES OF SIGNAL FLOW GRAPHS , 2022 .

[217]  R. A. Leary,et al.  Interaction theory in forest ecology and management , 1985, Forestry Sciences.

[218]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[219]  Madhur Anand,et al.  The Fundamentals of Vegetation Change - Complexity Rules , 2000 .

[220]  A. J. Willis Ecological understanding. The nature of theory and the theory of nature , 1995 .

[221]  Samuel J. Mason,et al.  Feedback Theory-Some Properties of Signal Flow Graphs , 1953, Proceedings of the IRE.

[222]  Giles M. Foody,et al.  On the compensation for chance agreement in image classification accuracy assessment, Photogram , 1992 .

[223]  Roland Schulze,et al.  Realized niche spaces and functional types: a framework for prediction of compositional change , 1995 .

[224]  Matthias M. Boer,et al.  Landscape-ecological impact of climatic change. , 1990 .

[225]  R. Itami,et al.  GIS-based habitat modeling using logistic multiple regression : a study of the Mt. Graham red squirrel , 1991 .

[226]  S. V. Stehman,et al.  Comparing thematic maps based on map value , 1999 .

[227]  Richard J. Aspinall,et al.  An inductive modelling procedure based on Bayes' theorem for analysis of pattern in spatial data , 1992, Int. J. Geogr. Inf. Sci..

[228]  J. S. Waller,et al.  Landscape Evaluation of Grizzly Bear Habitat in Western Montana , 1999 .

[229]  Fred E. Smeins,et al.  Predicting grassland community changes with an artificial neural network model , 1996 .

[230]  J. Pohlmann,et al.  Parallel Analysis: a method for determining significant principal components , 1995 .

[231]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[232]  J. Franklin,et al.  Coniferous Forest Classification and Inventory Using Landsat and Digital Terrain Data , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[233]  Folke O. Andersson Forest dynamics research in Western and Central Europe: J. Fanta (Editor), Proceedings of a workshop held 17–20 September 1985 in Wageningen, Holland, Pudoc, Wageningen, 1986. 320 pp. US$ 40.00/Dfl. 100.00 (paperback). ISBN 90-220-0902-5 , 1987 .

[234]  Mike P. Austin,et al.  Vegetation survey design for conservation: Gradsect sampling of forests in North-eastern New South Wales , 1989 .

[235]  W. Cooper,et al.  The Fundamentals of Vegetational Change , 1926 .

[236]  R Levins,et al.  DISCUSSION PAPER: THE QUALITATIVE ANALYSIS OF PARTIALLY SPECIFIED SYSTEMS , 1974, Annals of the New York Academy of Sciences.

[237]  Robert A. Monserud,et al.  A global vegetation model based on the climatological approach of Budyko , 1993 .

[238]  F. Harrell,et al.  Development of a clinical prediction model for an ordinal outcome: the World Health Organization Multicentre Study of Clinical Signs and Etiological agents of Pneumonia, Sepsis and Meningitis in Young Infants. WHO/ARI Young Infant Multicentre Study Group. , 1998, Statistics in medicine.

[239]  E. Salisbury,et al.  The Geography of the Flowering Plants , 1948, Nature.

[240]  C.J.F. ter Braak,et al.  CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4) , 1998 .

[241]  R. Hengeveld,et al.  Scales of variation: their distinction and ecological importance , 1987 .