Three‐dimensional seismic full‐waveform inversion using the finite‐difference contrast source inversion method

We present the extension of the so‐called finite‐difference contrast‐source inversion method for the three‐dimensional interpretation of full‐waveform seismic data using the acoustic approximation. The finite‐difference contrast‐source inversion method does not simulate a full forward problem in its inversion process, hence it is computationally more efficient than the standard non‐linear inversion methods. Furthermore it allows the use of an inhomogeneous background medium, hence this method has a great potential for carrying out time‐lapse seismic inversion. However, the price that we have to pay is the storing of the LU decomposition arrays of the impedance matrix of the background medium. We show some numerical examples to illustrate the (dis)advantages of this method.

[1]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[2]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[3]  A. Tarantola A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .

[4]  P. Mora Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .

[5]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[6]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[7]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[8]  T. Habashy,et al.  Simultaneous nonlinear reconstruction of two‐dimensional permittivity and conductivity , 1994 .

[9]  Z. M. Song,et al.  Frequency-domain acoustic-wave modeling and inversion of crosshole data; Part II, Inversion method, synthetic experiments and real-data results , 1995 .

[10]  Fadil Santosa,et al.  Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..

[11]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[12]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[13]  P. M. Berg,et al.  A contrast source inversion method , 1997 .

[14]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[15]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[16]  P. M. Berg,et al.  Extended contrast source inversion , 1999 .

[17]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[18]  P. M. Berg,et al.  Contrast Source Inversion Method: State of Art , 2001 .

[19]  P. M. Berg,et al.  Imaging of biomedical data using a multiplicative regularized contrast source inversion method , 2002 .

[20]  J. Bérenger,et al.  Application of the CFS PML to the absorption of evanescent waves in waveguides , 2002, IEEE Microwave and Wireless Components Letters.

[21]  Aria Abubakar,et al.  Towards non‐linear inversion for characterization of time‐lapse phenomena through numerical modelling , 2003 .

[22]  Aria Abubakar,et al.  Contrast source inversion methods in elastodynamics. , 2003, The Journal of the Acoustical Society of America.

[23]  A. Abubakar,et al.  Multiplicative regularization for contrast profile inversion , 2003 .

[24]  J. Virieux,et al.  Multiscale seismic imaging of the eastern Nankai trough by full waveform inversion , 2004 .

[25]  P. M. Berg,et al.  Iterative forward and inverse algorithms based on domain integral equations for three-dimensional electric and magnetic objects , 2004 .

[26]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[27]  Jean Virieux,et al.  Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt , 2004 .

[28]  Changsoo Shin,et al.  Waveform inversion using a logarithmic wavefield , 2006 .

[29]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[30]  S. Operto,et al.  3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .

[31]  Jean Virieux,et al.  Two-dimensional elastic full waveform inversion using Born and Rytov formulations in the frequency domain , 2007 .

[32]  William W. Symes,et al.  Migration velocity analysis and waveform inversion , 2008 .

[33]  Denes Vigh,et al.  3D prestack plane-wave, full-waveform inversion , 2008 .

[34]  Mike Warner,et al.  Efficient and Effective 3D Wavefield Tomography , 2008 .

[35]  Aria Abubakar,et al.  2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements , 2008 .

[36]  P. M. Berg,et al.  A finite-difference contrast source inversion method , 2008 .

[37]  Jean Virieux,et al.  Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data , 2008 .

[38]  L. Sirgue,et al.  3D Frequency Domain Waveform Inversion Using Time Domain Finite Difference Methods , 2008 .

[39]  A. Abubakar,et al.  Simultaneous multifrequency inversion of full-waveform seismic data , 2009 .

[40]  R. Plessix Three-dimensional frequency-domain full-waveform inversion with an iterative solver , 2009 .

[41]  Aria Abubakar,et al.  Application of the finite-difference contrast-source inversion algorithm to seismic full-waveform data , 2009 .