A compressive sensing image compression algorithm using quantized DCT and noiselet information

Inspired by recent theoretical advances in compressive sensing (CS), we propose a new framework that combines the classical local discrete cosine transform used in image compression algorithms such as JPEG with a global noiselet measure which is solved using second order cone programming (SOCP).

[1]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[2]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[3]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[4]  J. Romberg Imaging via Compressive Sampling [Introduction to compressive sampling and recovery via convex programming] , 2008 .

[5]  Michael B. Wakin,et al.  An Introduction To Compressive Sampling [A sensing/sampling paradigm that goes against the common knowledge in data acquisition] , 2008 .

[6]  Joseph W. Goodman,et al.  A mathematical analysis of the DCT coefficient distributions for images , 2000, IEEE Trans. Image Process..

[7]  J. Romberg,et al.  Imaging via Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[8]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[9]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[10]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[11]  Song-Chun Zhu,et al.  Prior Learning and Gibbs Reaction-Diffusion , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  C. Bachoc,et al.  Applied and Computational Harmonic Analysis Tight P-fusion Frames , 2022 .

[13]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[14]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[15]  F. Muller Distribution shape of two-dimensional DCT coefficients of natural images , 1993 .

[16]  John D. Villasenor,et al.  Structured Prefix Codes for Quantized Low-Shape-Parameter Generalized Gaussian Sources , 1999, IEEE Trans. Inf. Theory.