Interactive unsupervised classification and visualization for browsing an image collection

In this paper, we propose an approach to interactive navigation in image collections. As structured groups are more appealing to users than flat image collections, we propose an image clustering algorithm, with an incremental version that handles time-varying collections. A 3D graph-based visualization technique reflects the classification state. While this classification visualization is itself interactive, we show how user feedback may assist the classification, thus enabling a user to improve it.

[1]  B. Dousset,et al.  Visualization and analysis of large graphs , 2007, PIKM '07.

[2]  Yixin Chen,et al.  Content-based image retrieval by clustering , 2003, MIR '03.

[3]  Yoshua Bengio,et al.  Convergence Properties of the K-Means Algorithms , 1994, NIPS.

[4]  Daniel A. McFarland,et al.  The Art and Science of Dynamic Network Visualization , 2006, J. Soc. Struct..

[5]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[6]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[7]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[8]  Jacob Goldberger,et al.  Hierarchical Clustering of a Mixture Model , 2004, NIPS.

[9]  Gerald Schaefer,et al.  UCID: an uncompressed color image database , 2003, IS&T/SPIE Electronic Imaging.

[10]  Cordelia Schmid,et al.  Indexing Based on Scale Invariant Interest Points , 2001, ICCV.

[11]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[12]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[13]  Hayit Greenspan,et al.  A Continuous Probabilistic Framework for Image Matching , 2001, Comput. Vis. Image Underst..

[14]  Shiri Gordon,et al.  An efficient image similarity measure based on approximations of KL-divergence between two gaussian mixtures , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[15]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[16]  Raymond J. Mooney,et al.  A probabilistic framework for semi-supervised clustering , 2004, KDD.

[17]  James Ze Wang,et al.  Content-based image retrieval: approaches and trends of the new age , 2005, MIR '05.

[18]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[19]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[20]  D. Scott McCrickard,et al.  Visualizing Search Results using SQWID , 1997 .

[21]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[22]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Nuno Vasconcelos,et al.  Learning Mixture Hierarchies , 1998, NIPS.

[24]  Rajeev Motwani,et al.  Maintaining variance and k-medians over data stream windows , 2003, PODS.

[25]  Lisa Singh,et al.  Visual analysis of dynamic group membership in temporal social networks , 2007, SKDD.

[26]  Aristidis Likas,et al.  Bayesian feature and model selection for Gaussian mixture models , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Hagai Attias,et al.  A Variational Bayesian Framework for Graphical Models , 1999 .

[28]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..

[29]  Hanane Azzag Classification hiérarchique par des fourmis artificielles : applications à la fouille de données et de textes our le web , 2005 .

[30]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[31]  Nuno Vasconcelos,et al.  Image indexing with mixture hierarchies , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[32]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .