Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities
暂无分享,去创建一个
Jay D. Salmonson | Steven W. Haan | Michael M. Marinak | Mark Herrmann | D. H. Munro | T. R. Dittrich | S. M. Pollaine | George L. Strobel | Abraham J. Fetterman | L. Suter | M. Herrmann | M. Marinak | D. Munro | S. Pollaine | T. Dittrich | S. Haan | J. Salmonson | A. Fetterman | L. J. Suter | G. Strobel
[1] John Edwards,et al. The effects of fill tubes on the hydrodynamics of ignition targets and prospects for ignition , 2005 .
[2] D. Wilson,et al. Physics of one-dimensional capsule designs for the National Ignition Facility , 1999 .
[3] Dan J. Thoma,et al. The development and advantages of beryllium capsules for the National Ignition Facility , 1998 .
[4] Steven W. Haan,et al. A comparison of three-dimensional multimode hydrodynamic instability growth on various National Ignition Facility capsule designs with HYDRA simulations , 1998 .
[5] P. Walsh,et al. Characterization of National Ignitition Facility cryogenic beryllium capsules using x-ray phase contrast imaging , 2004 .
[6] Luiz Eduardo Borges da Silva,et al. Shock timing technique for the National Ignition Facility , 2001 .
[7] R. Stephens,et al. Representative surface profile power spectra from capsules used in NOVA and Omega implosion experiments , 1998 .
[8] Steven W. Haan,et al. Design of a 250 eV cryogenic ignition capsule for the National Ignition Facility , 2004 .
[9] Richard M. More,et al. Electronic energy-levels in dense plasmas , 1982 .
[10] M. Knudson,et al. Equation of state measurements in liquid deuterium to 70 GPa. , 2001, Physical review letters.
[11] R. B. Jacobs,et al. Beta energy driven uniform deuterium--tritium ice layer in reactor-size cryogenic inertial fusion targets , 1988 .
[12] Bar-Shalom,et al. Photoelectric effect in the super transition array model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[13] A. B. Langdon,et al. National Ignition Facility targets driven at high radiation temperature: Ignition, hydrodynamic stability, and laser–plasma interactions , 2004 .
[14] Peter A. Amendt,et al. Design and modeling of ignition targets for the National Ignition Facility , 1995 .
[15] Kamel Fezzaa,et al. Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging , 2005 .
[16] S. J. Moon,et al. Properties of fluid deuterium under double-shock compression to several Mbar , 2004 .
[17] G. Zimmerman,et al. A new quotidian equation of state (QEOS) for hot dense matter , 1988 .
[18] Gregory A. Moses,et al. Inertial confinement fusion , 1982 .
[19] M. Marinak,et al. Reduced scale National Ignition Facility capsule design , 1998 .
[20] G. W. Collins. Equation of State measurements of hydrogen isotopes on Nova , 1997 .
[21] Forrest J. Rogers,et al. Updated Opal Opacities , 1996 .
[22] P. Lovoi,et al. Laser paint stripping offers control and flexibility , 1994 .
[23] O. Landen,et al. Three-dimensional simulations of Nova high growth factor capsule implosion experiments , 1996 .
[24] Steven W. Haan,et al. NIF capsule design update , 1997 .
[25] Robert Cook,et al. Review of indirect-drive ignition design options for the National Ignition Facility , 1999 .
[26] L. Suter,et al. Yield and hydrodynamic instability versus absorbed energy for a uniformly doped beryllium 250 eV ignition capsule , 2004 .