Closed Curves of Global bifurcations in Chua's equation: a Mechanism for their Formation

In this work, the presence of closed bifurcation curves of homoclinic and heteroclinic connections has been detected in Chua’s equation. We have numerically found and qualitatively described the mechanism of the formation/destruction of such closed curves. We relate this phenomenon to a failure of transversality in a curve of T-points in a three-dimensional parameter space.

[1]  Isolas, cusps and global bifurcations in an electronic oscillator , 1997 .

[2]  V. V. Bykov,et al.  The bifurcations of separatrix contours and chaos , 1993 .

[3]  Chai Wah Wu,et al.  LORENZ EQUATION AND CHUA’S EQUATION , 1996 .

[4]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[5]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[6]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[7]  Alejandro J. Rodríguez-Luis,et al.  Takens-Bogdanov bifurcations of periodic orbits and Arnold's Tongues in a Three-Dimensional Electronic Model , 2001, Int. J. Bifurc. Chaos.

[8]  Alejandro J. Rodríguez-Luis,et al.  Nontransversal curves of T-points: a source of closed curves of global bifurcations , 2002 .

[9]  Alejandro J. Rodríguez-Luis,et al.  The non-transverse Shil'nikov-Hopf bifurcation: uncoupling of homoclinic orbits and homoclinic tangencies , 1999 .

[10]  Antonio Algaba,et al.  Some Results on Chua's equation Near a Triple-Zero Linear Degeneracy , 2003, Int. J. Bifurc. Chaos.

[11]  Bifurcations near homoclinic orbits with symmetry , 1984 .

[12]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[13]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[14]  Alejandro J. Rodríguez-Luis,et al.  On the Hopf-Pitchfork bifurcation in the Chua's equation , 2000, Int. J. Bifurc. Chaos.

[15]  Colin Sparrow,et al.  T-points: A codimension two heteroclinic bifurcation , 1986 .

[16]  E. Freire,et al.  T-Points in a Z2-Symmetric Electronic Oscillator. (I) Analysis , 2002 .

[17]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[18]  Yu. A. Kuznetsov,et al.  NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .

[19]  Carlo R. Laing,et al.  Successive homoclinic tangencies to a limit cycle , 1995 .